These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26253917)

  • 1. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.
    Mu B; Xu H; Yang Y
    Bioresour Technol; 2015 Nov; 196():332-8. PubMed ID: 26253917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol.
    Sindhu R; Binod P; Satyanagalakshmi K; Janu KU; Sajna KV; Kurien N; Sukumaran RK; Pandey A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2313-23. PubMed ID: 20526821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of γ-irradiation with other pretreatments followed with simultaneous saccharification and fermentation on bioconversion of microcrystalline cellulose for bioethanol production.
    Liu Y; Zhou H; Wang S; Wang K; Su X
    Bioresour Technol; 2015 Apr; 182():289-295. PubMed ID: 25706554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.
    Wang L; Zhang Y; Gao P; Shi D; Liu H; Gao H
    Biotechnol Bioeng; 2006 Feb; 93(3):443-56. PubMed ID: 16196052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study.
    Gaikwad A
    Appl Biochem Biotechnol; 2019 Mar; 187(3):800-816. PubMed ID: 30084003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production.
    Xu F; Shi YC; Wu X; Theerarattananoon K; Staggenborg S; Wang D
    Bioprocess Biosyst Eng; 2011 May; 34(4):485-92. PubMed ID: 21153666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production.
    Brienzo M; Tyhoda L; Benjamin Y; Görgens J
    N Biotechnol; 2015 Mar; 32(2):253-62. PubMed ID: 25576176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis kinetics characteristic of recycled fiber in subcritical water.
    Wang Y; Wan J; Ma Y; Huang M
    Bioresour Technol; 2012 Feb; 105():152-9. PubMed ID: 22178492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis.
    Al-Zuhair S
    Bioresour Technol; 2008 Jul; 99(10):4078-85. PubMed ID: 17935980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes.
    Jacobsen SE; Wyman CE
    Appl Biochem Biotechnol; 2000; 84-86():81-96. PubMed ID: 10849781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of the amorphous cellulose in cotton-based paper.
    Stephens CH; Whitmore PM; Morris HR; Bier ME
    Biomacromolecules; 2008 Apr; 9(4):1093-9. PubMed ID: 18324778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production.
    Singhania RR; Patel AK; Sukumaran RK; Larroche C; Pandey A
    Bioresour Technol; 2013 Jan; 127():500-7. PubMed ID: 23069613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor.
    Barman DN; Haque MA; Kang TH; Kim MK; Kim J; Kim H; Yun HD
    Biosci Biotechnol Biochem; 2012; 76(12):2201-7. PubMed ID: 23221693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment.
    Jeihanipour A; Karimi K; Taherzadeh MJ
    Biotechnol Bioeng; 2010 Feb; 105(3):469-76. PubMed ID: 19806660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse.
    Zhang J; Ma X; Yu J; Zhang X; Tan T
    Bioresour Technol; 2011 Mar; 102(6):4585-9. PubMed ID: 21256001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.