These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26253963)

  • 1. Methodology for the High-Throughput Identification and Characterization of tRNA Variants That Are Substrates for a tRNA Decay Pathway.
    Payea MJ; Guy MP; Phizicky EM
    Methods Enzymol; 2015; 560():1-17. PubMed ID: 26253963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis.
    Guy MP; Young DL; Payea MJ; Zhang X; Kon Y; Dean KM; Grayhack EJ; Mathews DH; Fields S; Phizicky EM
    Genes Dev; 2014 Aug; 28(15):1721-32. PubMed ID: 25085423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread temperature sensitivity and tRNA decay due to mutations in a yeast tRNA.
    Payea MJ; Sloma MF; Kon Y; Young DL; Guy MP; Zhang X; De Zoysa T; Fields S; Mathews DH; Phizicky EM
    RNA; 2018 Mar; 24(3):410-422. PubMed ID: 29259051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications.
    Dewe JM; Whipple JM; Chernyakov I; Jaramillo LN; Phizicky EM
    RNA; 2012 Oct; 18(10):1886-96. PubMed ID: 22895820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences.
    De Zoysa T; Phizicky EM
    PLoS Genet; 2020 Aug; 16(8):e1008893. PubMed ID: 32841241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA.
    Whipple JM; Lane EA; Chernyakov I; D'Silva S; Phizicky EM
    Genes Dev; 2011 Jun; 25(11):1173-84. PubMed ID: 21632824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1.
    Chernyakov I; Whipple JM; Kotelawala L; Grayhack EJ; Phizicky EM
    Genes Dev; 2008 May; 22(10):1369-80. PubMed ID: 18443146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species.
    Tasak M; Phizicky EM
    PLoS Genet; 2022 Jul; 18(7):e1010215. PubMed ID: 35901126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An interplay between transcription, processing, and degradation determines tRNA levels in yeast.
    Wichtowska D; Turowski TW; Boguta M
    Wiley Interdiscip Rev RNA; 2013; 4(6):709-22. PubMed ID: 24039171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast.
    Payea MJ; Hauke AC; De Zoysa T; Phizicky EM
    RNA; 2020 Jan; 26(1):29-43. PubMed ID: 31619505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway.
    Turowski TW; Karkusiewicz I; Kowal J; Boguta M
    RNA; 2012 Oct; 18(10):1823-32. PubMed ID: 22919049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chapter 11. Identification and analysis of tRNAs that are degraded in Saccharomyces cerevisiae due to lack of modifications.
    Chernyakov I; Baker MA; Grayhack EJ; Phizicky EM
    Methods Enzymol; 2008; 449():221-37. PubMed ID: 19215761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional accumulation of toxic tRNAs to cause amino acid misincorporation.
    Zimmerman SM; Kon Y; Hauke AC; Ruiz BY; Fields S; Phizicky EM
    Nucleic Acids Res; 2018 Sep; 46(15):7831-7843. PubMed ID: 30007351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in
    Khonsari B; Klassen R
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32392804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of mutant tRNA gene transcripts in vivo in Saccharomyces cerevisiae by abortive primer extension.
    Wilhelm ML; Wilhelm FX; Ebel JP
    Anal Biochem; 1991 Jul; 196(1):156-60. PubMed ID: 1888029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs.
    Saikia M; Fu Y; Pavon-Eternod M; He C; Pan T
    RNA; 2010 Jul; 16(7):1317-27. PubMed ID: 20484468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified view of tRNA: stability amid sequence diversity.
    Engelke DR; Hopper AK
    Mol Cell; 2006 Jan; 21(2):144-5. PubMed ID: 16427003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase.
    Nomura Y; Ohno S; Nishikawa K; Yokogawa T
    Genes Cells; 2016 Jan; 21(1):41-52. PubMed ID: 26663416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay.
    Martin S; Allan KC; Pinkard O; Sweet T; Tesar PJ; Coller J
    Nat Commun; 2022 Aug; 13(1):5003. PubMed ID: 36008413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.