BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26254008)

  • 1. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.
    Choi H; Kim S; Fermin D; Tsou CC; Nesvizhskii AI
    J Proteomics; 2015 Nov; 129():121-126. PubMed ID: 26254008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics.
    Langley SR; Mayr M
    J Proteomics; 2015 Nov; 129():83-92. PubMed ID: 26193490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance analysis of microarray for relative quantitation of LC/MS data in proteomics.
    Roxas BA; Li Q
    BMC Bioinformatics; 2008 Apr; 9():187. PubMed ID: 18402702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.
    Ramus C; Hovasse A; Marcellin M; Hesse AM; Mouton-Barbosa E; Bouyssié D; Vaca S; Carapito C; Chaoui K; Bruley C; Garin J; Cianférani S; Ferro M; Van Dorssaeler A; Burlet-Schiltz O; Schaeffer C; Couté Y; Gonzalez de Peredo A
    J Proteomics; 2016 Jan; 132():51-62. PubMed ID: 26585461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProtQuant: a tool for the label-free quantification of MudPIT proteomics data.
    Bridges SM; Magee GB; Wang N; Williams WP; Burgess SC; Nanduri B
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S24. PubMed ID: 18047724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics.
    Pham TV; Piersma SR; Warmoes M; Jimenez CR
    Bioinformatics; 2010 Feb; 26(3):363-9. PubMed ID: 20007255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProteinInferencer: Confident protein identification and multiple experiment comparison for large scale proteomics projects.
    Zhang Y; Xu T; Shan B; Hart J; Aslanian A; Han X; Zong N; Li H; Choi H; Wang D; Acharya L; Du L; Vogt PK; Ping P; Yates JR
    J Proteomics; 2015 Nov; 129():25-32. PubMed ID: 26196237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data.
    Ning K; Fermin D; Nesvizhskii AI
    J Proteome Res; 2012 Apr; 11(4):2261-71. PubMed ID: 22329341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA.
    Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT
    J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using weighted permutation scores to detect differential gene expression with microarray data.
    Guo X; Pan W
    J Bioinform Comput Biol; 2005 Aug; 3(4):989-1006. PubMed ID: 16078371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.
    Dowsey AW; Dunn MJ; Yang GZ
    Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EBprot: Statistical analysis of labeling-based quantitative proteomics data.
    Koh HW; Swa HL; Fermin D; Ler SG; Gunaratne J; Choi H
    Proteomics; 2015 Aug; 15(15):2580-91. PubMed ID: 25913743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results.
    Braisted JC; Kuntumalla S; Vogel C; Marcotte EM; Rodrigues AR; Wang R; Huang ST; Ferlanti ES; Saeed AI; Fleischmann RD; Peterson SN; Pieper R
    BMC Bioinformatics; 2008 Dec; 9():529. PubMed ID: 19068132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for clustering proteomics data using Bayesian fast Fourier transform.
    Bensmail H; Golek J; Moody MM; Semmes JO; Haoudi A
    Bioinformatics; 2005 May; 21(10):2210-24. PubMed ID: 15769836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-Level Statistical Analysis of Quantitative Label-Free Proteomics Data with ProStaR.
    Wieczorek S; Combes F; Borges H; Burger T
    Methods Mol Biol; 2019; 1959():225-246. PubMed ID: 30852826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised LC/MS alignment for differential proteomics.
    Fischer B; Grossmann J; Roth V; Gruissem W; Baginsky S; Buhmann JM
    Bioinformatics; 2006 Jul; 22(14):e132-40. PubMed ID: 16873463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.
    Schilling B; Rardin MJ; MacLean BX; Zawadzka AM; Frewen BE; Cusack MP; Sorensen DJ; Bereman MS; Jing E; Wu CC; Verdin E; Kahn CR; Maccoss MJ; Gibson BW
    Mol Cell Proteomics; 2012 May; 11(5):202-14. PubMed ID: 22454539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein subcellular locations using a new measure of information discrepancy.
    Jin L; Tang H; Fang W
    J Bioinform Comput Biol; 2005 Aug; 3(4):915-27. PubMed ID: 16078367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.