These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26254036)

  • 1. Investigating membrane and mitochondrial cryobiological responses of HUVEC using interrupted cooling protocols.
    Reardon AJ; Elliott JA; McGann LE
    Cryobiology; 2015 Oct; 71(2):306-17. PubMed ID: 26254036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreservation-induced delayed injury and cell-type-specific responses during the cryopreservation of endothelial cell monolayers.
    Yu M; Marquez-Curtis LA; Elliott JAW
    Cryobiology; 2024 Jun; 115():104857. PubMed ID: 38350589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach.
    Sultani AB; Marquez-Curtis LA; Elliott JA; McGann LE
    Sci Rep; 2016 Oct; 6():34393. PubMed ID: 27708349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating cryoinjury using simulations and experiments: 2. TF-1 cells during graded freezing (interrupted slow cooling without hold time).
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Aug; 61(1):46-51. PubMed ID: 20471968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cryobiological responses in TF-1 cells using interrupted freezing procedures.
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Apr; 60(2):106-16. PubMed ID: 19766619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond membrane integrity: Assessing the functionality of human umbilical vein endothelial cells after cryopreservation.
    Marquez-Curtis LA; Sultani AB; McGann LE; Elliott JA
    Cryobiology; 2016 Jun; 72(3):183-90. PubMed ID: 27182035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of human umbilical vein and porcine corneal endothelial cell monolayers.
    Eskandari N; Marquez-Curtis LA; McGann LE; Elliott JAW
    Cryobiology; 2018 Dec; 85():63-72. PubMed ID: 30292811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating cryoinjury using simulations and experiments. 1: TF-1 cells during two-step freezing (rapid cooling interrupted with a hold time).
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Aug; 61(1):38-45. PubMed ID: 20471379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation of human cerebral microvascular endothelial cells with glycerol.
    Mohammed L; Marquez-Curtis LA; Elliott JAW
    Cryobiology; 2023 Dec; 113():104551. PubMed ID: 37328025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for Cryopreservation of Endothelial Monolayers.
    Marquez-Curtis LA; Eskandari N; McGann LE; Elliott JAW
    Methods Mol Biol; 2021; 2180():581-591. PubMed ID: 32797436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cryobiology of rat and human dendritic cells: preservation and destruction of membrane integrity by freezing.
    Taylor MJ; London NJ; Thirdborough SM; Lake SP; James RF
    Cryobiology; 1990 Jun; 27(3):269-78. PubMed ID: 2379413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion and cryopreservation of porcine and human corneal endothelial cells.
    Marquez-Curtis LA; McGann LE; Elliott JAW
    Cryobiology; 2017 Aug; 77():1-13. PubMed ID: 28465186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing.
    Hunt CJ; Armitage SE; Pegg DE
    Cryobiology; 2003 Feb; 46(1):76-87. PubMed ID: 12623030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cooling rate and equilibration time on pre-freeze and post-thaw survival of buck sperm.
    Ahmad M; Nasrullah R; Ahmad N
    Cryobiology; 2015 Jun; 70(3):233-8. PubMed ID: 25771348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cooling rates and plunging temperatures in an interrupted slow-freezing procedure for semen of the African catfish, Clarias gariepinus.
    Viveiros AT; Lock EJ; Woelders H; Komen J
    Cryobiology; 2001 Nov; 43(3):276-87. PubMed ID: 11888221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of freezing injury in articular cartilage.
    Muldrew K; Hurtig M; Novak K; Schachar N; McGann LE
    Cryobiology; 1994 Feb; 31(1):31-8. PubMed ID: 8156798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cooling rate on sperm quality of cryopreserved Andalusian donkey spermatozoa.
    Demyda-Peyrás S; Bottrel M; Acha D; Ortiz I; Hidalgo M; Carrasco JJ; Gómez-Arrones V; Gósalvez J; Dorado J
    Anim Reprod Sci; 2018 Jun; 193():201-208. PubMed ID: 29699919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of Iberian pig spermatozoa. Comparison of different freezing extenders based on post-thaw sperm quality.
    De Mercado E; Rodríguez A; Gómez E; Sanz E
    Anim Reprod Sci; 2010 Mar; 118(1):54-61. PubMed ID: 19586729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis.
    Heng BC; Ye CP; Liu H; Toh WS; Rufaihah AJ; Yang Z; Bay BH; Ge Z; Ouyang HW; Lee EH; Cao T
    J Biomed Sci; 2006 May; 13(3):433-45. PubMed ID: 16374523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.