BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 26254059)

  • 1. Role of autophagy in the pathogenesis of multiple sclerosis.
    Liang P; Le W
    Neurosci Bull; 2015 Aug; 31(4):435-44. PubMed ID: 26254059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic Targeting of Immune Cell Autophagy in Multiple Sclerosis: Russian Roulette or Silver Bullet?
    Yang G; Van Kaer L
    Front Immunol; 2021; 12():724108. PubMed ID: 34531871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Shen D; Liu K; Wang H; Wang H
    Clin Exp Immunol; 2022 Aug; 209(2):140-150. PubMed ID: 35641229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic changes in autophagy-related genes are inversely correlated with inflammation and are associated with multiple sclerosis lesion pathology.
    Misrielal C; Alsema AM; Wijering MHC; Miedema A; Mauthe M; Reggiori F; Eggen BJL
    Brain Behav Immun Health; 2022 Nov; 25():100510. PubMed ID: 36120103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR kinase, a key player in the regulation of glial functions: relevance for the therapy of multiple sclerosis.
    Dello Russo C; Lisi L; Feinstein DL; Navarra P
    Glia; 2013 Mar; 61(3):301-11. PubMed ID: 23044764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation.
    Luz A; Fainstein N; Einstein O; Ben-Hur T
    Exp Neurol; 2015 Nov; 273():234-42. PubMed ID: 26342755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity.
    Keller CW; Lünemann JD
    Front Immunol; 2017; 8():165. PubMed ID: 28289410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration.
    van Strien ME; de Vries HE; Chrobok NL; Bol JGJM; Breve JJP; van der Pol SMP; Kooij G; van Buul JD; Karpuj M; Steinman L; Wilhelmus MM; Sestito C; Drukarch B; Van Dam AM
    Brain Behav Immun; 2015 Nov; 50():141-154. PubMed ID: 26133787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis.
    De Santi L; Annunziata P; Sessa E; Bramanti P
    J Neurol Sci; 2009 Dec; 287(1-2):17-26. PubMed ID: 19758606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The beneficial role of autophagy in multiple sclerosis: Yes or No?
    Al-Kuraishy HM; Jabir MS; Al-Gareeb AI; Saad HM; Batiha GE; Klionsky DJ
    Autophagy; 2024 Feb; 20(2):259-274. PubMed ID: 37712858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating the Role of Toll-Like Receptors in the Neuro-inflammation Model EAE.
    Fallarino F; Gargaro M; Mondanell G; Downer EJ; Hossain MJ; Gran B
    Methods Mol Biol; 2016; 1390():383-411. PubMed ID: 26803641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.
    Hammer LA; Waldner H; Zagon IS; McLaughlin PJ
    Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.
    Berard JL; Zarruk JG; Arbour N; Prat A; Yong VW; Jacques FH; Akira S; David S
    Glia; 2012 Jul; 60(7):1145-59. PubMed ID: 22499213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Astrocytes in the pathogenesis of multiple sclerosis].
    Takarada-Iemata M; Hori O
    Nihon Yakurigaku Zasshi; 2021; 156(4):230-234. PubMed ID: 34193702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS.
    Ellwardt E; Zipp F
    Exp Neurol; 2014 Dec; 262 Pt A():8-17. PubMed ID: 24530639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis.
    Skundric DS; Cruikshank WW; Montgomery PC; Lisak RP; Tse HY
    Cytokine; 2015 Oct; 75(2):234-48. PubMed ID: 25703787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin.
    Misrielal C; Mauthe M; Reggiori F; Eggen BJL
    Front Cell Neurosci; 2020; 14():603710. PubMed ID: 33328897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain.
    Dang PT; Bui Q; D'Souza CS; Orian JM
    Curr Top Behav Neurosci; 2015; 26():143-77. PubMed ID: 26126592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model.
    Shalaby SM; Sabbah NA; Saber T; Abdel Hamid RA
    IUBMB Life; 2016 Feb; 68(2):106-15. PubMed ID: 26757144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal injury in chronic CNS inflammation.
    Zindler E; Zipp F
    Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):551-62. PubMed ID: 21619866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.