BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 26254297)

  • 1. Correction for Grossi et al., Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 Sep; 81(17):6088. PubMed ID: 26254297
    [No Abstract]   [Full Text] [Related]  

  • 2. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 May; 81(9):3157-68. PubMed ID: 25724965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mono- to tetra-alkyl ether cardiolipins in a mesophilic, sulfate-reducing bacterium identified by UHPLC-HRMS
    Hopmans EC; Grossi V; Sahonero-Canavesi DX; Bale NJ; Cravo-Laureau C; Sinninghe Damsté JS
    Front Microbiol; 2024; 15():1404328. PubMed ID: 38841066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria.
    Vinçon-Laugier A; Cravo-Laureau C; Mitteau I; Grossi V
    Front Microbiol; 2017; 8():1532. PubMed ID: 28848536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions.
    Ding S; Grossi V; Hopmans EC; Bale NJ; Cravo-Laureau C; Sinninghe Damsté JS
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2400711121. PubMed ID: 38833476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.
    Weijers JW; Schouten S; Hopmans EC; Geenevasen JA; David OR; Coleman JM; Pancost RD; Sinninghe Damsté JS
    Environ Microbiol; 2006 Apr; 8(4):648-57. PubMed ID: 16584476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments.
    Zhu C; Meador TB; Dummann W; Hinrichs KU
    Rapid Commun Mass Spectrom; 2014 Feb; 28(4):332-8. PubMed ID: 24395500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate.
    Astals S; Nolla-Ardèvol V; Mata-Alvarez J
    Bioresour Technol; 2012 Apr; 110():63-70. PubMed ID: 22341889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox).
    Sinninghe Damsté JS; Rijpstra WI; Geenevasen JA; Strous M; Jetten MS
    FEBS J; 2005 Aug; 272(16):4270-83. PubMed ID: 16098207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns.
    Liu XL; Summons RE; Hinrichs KU
    Rapid Commun Mass Spectrom; 2012 Oct; 26(19):2295-302. PubMed ID: 22956321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs.
    Lewis RN; Pohle W; McElhaney RN
    Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural complexity in isoprenoid glycerol dialkyl glycerol tetraether lipid cores of Sulfolobus and other archaea revealed by liquid chromatography-tandem mass spectrometry.
    Knappy CS; Barillà D; de Blaquiere JP; Morgan HW; Nunn CE; Suleman M; Tan CH; Keely BJ
    Chem Phys Lipids; 2012 Sep; 165(6):648-55. PubMed ID: 22776323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry.
    Nartker S; Ammerman M; Aurandt J; Stogsdil M; Hayden O; Antle C
    Waste Manag; 2014 Dec; 34(12):2567-71. PubMed ID: 25249492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge.
    Song YC; Kwon SJ; Woo JH
    Water Res; 2004 Apr; 38(7):1653-62. PubMed ID: 15026219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system.
    Lien T; Madsen M; Steen IH; Gjerdevik K
    Int J Syst Bacteriol; 1998 Apr; 48 Pt 2():469-74. PubMed ID: 9731286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge.
    Oude Elferink SJ; Akkermans-van Vliet WM; Bogte JJ; Stams AJ
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():345-50. PubMed ID: 10319454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol utilization in defined mixed cultures of thermophilic anaerobes in the presence of sulfate.
    Goorissen HP; Stams AJ; Hansen TA
    FEMS Microbiol Ecol; 2004 Sep; 49(3):489-94. PubMed ID: 19712297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling sulfate removal by inhibited mesophilic mixed anaerobic communities using a statistical approach.
    Moon C; Singh R; Chaganti SR; Lalman JA
    Water Res; 2013 May; 47(7):2341-51. PubMed ID: 23466036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus.
    Rütters H; Sass H; Cypionka H; Rullkötter J
    Arch Microbiol; 2001 Dec; 176(6):435-42. PubMed ID: 11734887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial formation of phosphatic laminites off Peru.
    Arning ET; Birgel D; Brunner B; Peckmann J
    Geobiology; 2009 Jun; 7(3):295-307. PubMed ID: 19476504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.