These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26254328)

  • 1. Presence of state transitions in the cryptophyte alga Guillardia theta.
    Cheregi O; Kotabová E; Prášil O; Schröder WP; Kaňa R; Funk C
    J Exp Bot; 2015 Oct; 66(20):6461-70. PubMed ID: 26254328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities.
    Kieselbach T; Cheregi O; Green BR; Funk C
    Photosynth Res; 2018 Mar; 135(1-3):149-163. PubMed ID: 28540588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae.
    Kaňa R; Kotabová E; Sobotka R; Prášil O
    PLoS One; 2012; 7(1):e29700. PubMed ID: 22235327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth phase-dependent reorganization of cryptophyte photosystem I antennae.
    Zhang S; Si L; Su X; Zhao X; An X; Li M
    Commun Biol; 2024 May; 7(1):560. PubMed ID: 38734819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The photoprotective protein PsbS exerts control over CO(2) assimilation rate in fluctuating light in rice.
    Hubbart S; Ajigboye OO; Horton P; Murchie EH
    Plant J; 2012 Aug; 71(3):402-12. PubMed ID: 22413771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta.
    Funk C; Alami M; Tibiletti T; Green BR
    Biochim Biophys Acta; 2011 Jul; 1807(7):841-6. PubMed ID: 21459077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of photoacclimation in twelve freshwater photoautotrophs (chlorophyte, bacillaryophyte, cryptophyte and cyanophyte) isolated from a natural community.
    Deblois CP; Marchand A; Juneau P
    PLoS One; 2013; 8(3):e57139. PubMed ID: 23526934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different phycobilin antenna organisations affect the balance between light use and growth rate in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata.
    Kunath C; Jakob T; Wilhelm C
    Photosynth Res; 2012 Mar; 111(1-2):173-83. PubMed ID: 22183802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin-mediated photoreception in cryptophyte flagellates.
    Sineshchekov OA; Govorunova EG; Jung KH; Zauner S; Maier UG; Spudich JL
    Biophys J; 2005 Dec; 89(6):4310-9. PubMed ID: 16150961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulatory mechanisms of photosynthesis light reactions in higher plants].
    Węgrzyn A; Mazur R
    Postepy Biochem; 2020 Jun; 66(2):134-142. PubMed ID: 32700507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.
    Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J
    J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii.
    Rathbone HW; Laos AJ; Michie KA; Iranmanesh H; Biazik J; Goodchild SC; Thordarson P; Green BR; Curmi PMG
    Commun Biol; 2023 Nov; 6(1):1158. PubMed ID: 37957226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoprotection in cyanobacteria: regulation of light harvesting.
    Bailey S; Grossman A
    Photochem Photobiol; 2008; 84(6):1410-20. PubMed ID: 19067963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility.
    Kaňa R; Kotabová E; Šedivá B; Kuthanová Trsková E
    Folia Microbiol (Praha); 2019 Sep; 64(5):691-703. PubMed ID: 31352667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi.
    Xu K; Gao K
    Plant Cell Physiol; 2012 Jul; 53(7):1267-74. PubMed ID: 22555817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae.
    Greenwold MJ; Cunningham BR; Lachenmyer EM; Pullman JM; Richardson TL; Dudycha JL
    Proc Biol Sci; 2019 May; 286(1902):20190655. PubMed ID: 31088271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.
    Singh SK; Reddy VR
    J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.
    Dietzel L; Bräutigam K; Pfannschmidt T
    FEBS J; 2008 Mar; 275(6):1080-8. PubMed ID: 18318835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.
    Kornyeyev D; Logan BA; Tissue DT; Allen RD; Holaday AS
    Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast.
    Minagawa J
    Biochim Biophys Acta; 2011 Aug; 1807(8):897-905. PubMed ID: 21108925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.