These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
675 related articles for article (PubMed ID: 26254524)
1. Relating the carbon footprint of milk from Irish dairy farms to economic performance. O'Brien D; Hennessy T; Moran B; Shalloo L J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524 [TBL] [Abstract][Full Text] [Related]
2. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms. O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256 [TBL] [Abstract][Full Text] [Related]
3. Assessment of carbon footprint of milk production and identification of its major determinants in smallholder dairy farms in Karnataka, India. Mech A; Devi GL; Sivaram M; Sirohi S; Dhali A; Kolte AP; Malik PK; Veeranna RK; Niketha L; Bhatta R J Dairy Sci; 2023 Dec; 106(12):8847-8860. PubMed ID: 37641313 [TBL] [Abstract][Full Text] [Related]
4. Factors associated with the financial performance of spring-calving, pasture-based dairy farms. Ramsbottom G; Horan B; Berry DP; Roche JR J Dairy Sci; 2015 May; 98(5):3526-40. PubMed ID: 25747836 [TBL] [Abstract][Full Text] [Related]
5. Carbon footprint of dairy goat milk production in New Zealand. Robertson K; Symes W; Garnham M J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064 [TBL] [Abstract][Full Text] [Related]
6. Understanding variability in carbon footprint of smallholder dairy farms in the central highlands of Ethiopia. Feyissa AA; Senbeta F; Diriba D; Tolera A Trop Anim Health Prod; 2022 Dec; 54(6):411. PubMed ID: 36456660 [TBL] [Abstract][Full Text] [Related]
7. Factors associated with profitability in pasture-based systems of milk production. Hanrahan L; McHugh N; Hennessy T; Moran B; Kearney R; Wallace M; Shalloo L J Dairy Sci; 2018 Jun; 101(6):5474-5485. PubMed ID: 29525299 [TBL] [Abstract][Full Text] [Related]
8. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk. Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588 [TBL] [Abstract][Full Text] [Related]
9. Life cycle assessment of milk production from commercial dairy farms: the influence of management tactics. Yan MJ; Humphreys J; Holden NM J Dairy Sci; 2013 Jul; 96(7):4112-24. PubMed ID: 23660142 [TBL] [Abstract][Full Text] [Related]
10. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms. Robert Kiefer L; Menzel F; Bahrs E J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922 [TBL] [Abstract][Full Text] [Related]
11. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration. Salvador S; Corazzin M; Romanzin A; Bovolenta S J Environ Manage; 2017 Jul; 196():644-650. PubMed ID: 28365549 [TBL] [Abstract][Full Text] [Related]
12. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. Van Middelaar CE; Dijkstra J; Berentsen PB; De Boer IJ J Dairy Sci; 2014; 97(4):2427-39. PubMed ID: 24485690 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions. O'Brien D; Shalloo L; Patton J; Buckley F; Grainger C; Wallace M Animal; 2012 Sep; 6(9):1512-27. PubMed ID: 23031525 [TBL] [Abstract][Full Text] [Related]
14. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. Van Middelaar CE; Berentsen PB; Dijkstra J; Van Arendonk JA; De Boer IJ J Dairy Sci; 2015 Jul; 98(7):4889-903. PubMed ID: 25912865 [TBL] [Abstract][Full Text] [Related]
15. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
16. Effect of farming strategies on environmental impact of intensive dairy farms in Italy. Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128 [TBL] [Abstract][Full Text] [Related]
17. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway. Özkan Gülzari Ş; Vosough Ahmadi B; Stott AW Prev Vet Med; 2018 Feb; 150():19-29. PubMed ID: 29406080 [TBL] [Abstract][Full Text] [Related]
18. Climate mitigation by dairy intensification depends on intensive use of spared grassland. Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511 [TBL] [Abstract][Full Text] [Related]
19. Carbon footprint of Canadian dairy products: calculations and issues. Vergé XP; Maxime D; Dyer JA; Desjardins RL; Arcand Y; Vanderzaag A J Dairy Sci; 2013 Sep; 96(9):6091-104. PubMed ID: 23831091 [TBL] [Abstract][Full Text] [Related]
20. Estimating the impact of clinical mastitis in dairy cows on greenhouse gas emissions using a dynamic stochastic simulation model: a case study. Mostert PF; Bokkers EAM; de Boer IJM; van Middelaar CE Animal; 2019 Dec; 13(12):2913-2921. PubMed ID: 31210122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]