BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26254676)

  • 1. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.
    Alibardi L; Cossu R
    Waste Manag; 2016 Jan; 47(Pt A):69-77. PubMed ID: 26254676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.
    Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF
    Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.
    Alibardi L; Cossu R
    Waste Manag; 2015 Feb; 36():147-55. PubMed ID: 25529133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes.
    Okamoto M; Miyahara T; Mizuno O; Noike T
    Water Sci Technol; 2000; 41(3):25-32. PubMed ID: 11381999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.
    Bonk F; Bastidas-Oyanedel JR; Schmidt JE
    Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste.
    Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I
    Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.
    Kannengiesser J; Sakaguchi-Söder K; Mrukwia T; Jager J; Schebek L
    Waste Manag; 2016 Jan; 47(Pt A):78-83. PubMed ID: 26117421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of operational pH on biohydrogen production from food waste using anaerobic batch reactors.
    Lee C; Lee S; Han SK; Hwang S
    Water Sci Technol; 2014; 69(9):1886-93. PubMed ID: 24804664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of iron concentration on biohydrogen production from organic waste via anaerobic fermentation.
    Boni MR; Sbaffoni S; Tuccinardi L
    Environ Technol; 2014; 35(21-24):3000-10. PubMed ID: 25189848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism.
    Zhao J; Yang Q; Li X; Wang D; Luo K; Zhong Y; Xu Q; Zeng G
    Waste Manag; 2015 Dec; 46():133-9. PubMed ID: 26342451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass.
    Ghimire A; Sposito F; Frunzo L; Trably E; Escudié R; Pirozzi F; Lens PN; Esposito G
    Waste Manag; 2016 Apr; 50():55-64. PubMed ID: 26876775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.
    Singhania RR; Patel AK; Christophe G; Fontanille P; Larroche C
    Bioresour Technol; 2013 Oct; 145():166-74. PubMed ID: 23339903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food waste and food processing waste for biohydrogen production: a review.
    Yasin NH; Mumtaz T; Hassan MA; Abd Rahman N
    J Environ Manage; 2013 Nov; 130():375-85. PubMed ID: 24121591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.
    Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S
    Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.
    Chandrasekhar K; Amulya K; Mohan SV
    Waste Manag; 2015 Nov; 45():57-65. PubMed ID: 26117418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste.
    Shen D; Wang K; Yin J; Chen T; Yu X
    Waste Manag; 2016 May; 51():65-71. PubMed ID: 26965213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen Production from Simple Carbohydrates with Optimization of Operating Parameters.
    Muri P; Osojnik-Črnivec IG; Djinovič P; Pintar A
    Acta Chim Slov; 2016; 63(1):154-64. PubMed ID: 26970800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
    Sharma S; Basu S; Shetti NP; Aminabhavi TM
    Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation.
    Xiao B; Liu J
    J Hazard Mater; 2009 Aug; 168(1):163-7. PubMed ID: 19278778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.