BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26254785)

  • 1. Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production.
    Tapia-Venegas E; Cabrol L; Brandhoff B; Hamelin J; Trably E; Steyer JP; Ruiz-Filippi G
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8295-308. PubMed ID: 26254785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE).
    Xing D; Ren N; Gong M; Li J; Li Q
    Sci China C Life Sci; 2005 Apr; 48(2):155-62. PubMed ID: 15986888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathways of hydrogen production in fermentative acidogenic microflora.
    Zhang L; Li J; Ban Q; He J; Jha AK
    J Microbiol Biotechnol; 2012 May; 22(5):668-73. PubMed ID: 22561862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Start-up of bio-hydrogen production reactor seeded with sewage sludge and its microbial community analysis.
    Gong ML; Ren NQ; Xing DF
    Water Sci Technol; 2005; 52(1-2):115-21. PubMed ID: 16180417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate.
    Hung CH; Lee KS; Cheng LH; Huang YH; Lin PJ; Chang JS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):693-701. PubMed ID: 17440720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.
    Kim SH; Han SK; Shin HS
    Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing.
    Laothanachareon T; Kanchanasuta S; Mhuanthong W; Phalakornkule C; Pisutpaisal N; Champreda V
    J Environ Manage; 2014 Nov; 144():143-51. PubMed ID: 24945701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production.
    Lopes HJS; Ramos LR; Silva EL
    Appl Biochem Biotechnol; 2017 Nov; 183(3):712-728. PubMed ID: 28321784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge.
    Wang X; Hoefel D; Saint CP; Monis PT; Jin B
    J Appl Microbiol; 2007 Nov; 103(5):1415-23. PubMed ID: 17953552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors.
    Gallardo R; Faria C; Rodrigues LR; Pereira MA; Alves MM
    Bioresour Technol; 2014 Mar; 155():28-33. PubMed ID: 24413479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor.
    Palomo-Briones R; Trably E; López-Lozano NE; Celis LB; Méndez-Acosta HO; Bernet N; Razo-Flores E
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2465-2475. PubMed ID: 29335876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-culture H
    Anburajan P; Park JH; Sivagurunathan P; Pugazhendhi A; Kumar G; Choi CS; Kim SH
    J Biosci Bioeng; 2017 Sep; 124(3):339-345. PubMed ID: 28528789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production in an AnSBBR treating glycerin-based wastewater: effects of organic loading, influent concentration, and cycle time.
    Bravo IS; Lovato G; Rodrigues JA; Ratusznei SM; Zaiat M
    Appl Biochem Biotechnol; 2015 Feb; 175(4):1892-914. PubMed ID: 25427596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.
    Huang CL; Chen CC; Lin CY; Liu WT
    Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community structure of ethanol type fermentation in bio-hydrogen production.
    Ren N; Xing D; Rittmann BE; Zhao L; Xie T; Zhao X
    Environ Microbiol; 2007 May; 9(5):1112-25. PubMed ID: 17472628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].
    Ren NQ; Tang J; Gong ML
    Huan Jing Ke Xue; 2006 Jun; 27(6):1176-80. PubMed ID: 16921957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.
    El-Bery H; Tawfik A; Kumari S; Bux F
    Environ Technol; 2013; 34(13-16):1965-72. PubMed ID: 24350450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.