BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 26254785)

  • 21. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.
    Ratti RP; Delforno TP; Okada DY; Varesche MB
    Microbiol Res; 2015 Apr; 173():10-7. PubMed ID: 25801966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.
    Han W; Hu Y; Li S; Li F; Tang J
    Bioresour Technol; 2016 Oct; 218():589-94. PubMed ID: 27416509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of substrate concentration on the stability and yield of continuous biohydrogen production.
    Kyazze G; Martinez-Perez N; Dinsdale R; Premier GC; Hawkes FR; Guwy AJ; Hawkes DL
    Biotechnol Bioeng; 2006 Apr; 93(5):971-9. PubMed ID: 16353197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enrichment of Secondary Wastewater Sludge for Production of Hydrogen from Crude Glycerol and Comparative Evaluation of Mono-, Co- and Mixed-Culture Systems.
    Pachapur VL; Kutty P; Brar SK; Ramirez AA
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26771607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5].
    Gong ML; Ren NQ; Tang J
    Huan Jing Ke Xue; 2005 Mar; 26(2):177-80. PubMed ID: 16004324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).
    Ferraz AD; Zaiat M; Gupta M; Elbeshbishy E; Hafez H; Nakhla G
    Bioresour Technol; 2014 Jul; 164():371-9. PubMed ID: 24865326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biohydrogen fermentation of galactose at various substrate concentrations in an immobilized system and its microbial correspondence.
    Sivagurunathan P; Pugazhendhi A; Kumar G; Park JH; Kim SH
    J Biosci Bioeng; 2018 May; 125(5):559-564. PubMed ID: 29337032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge.
    Cirne DG; Bond P; Pratt S; Lant P; Batstone DJ
    Water Sci Technol; 2012; 65(1):7-14. PubMed ID: 22173402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose.
    Kumar G; Sivagurunathan P; Park JH; Park JH; Park HD; Yoon JJ; Kim SH
    Bioresour Technol; 2016 Apr; 206():188-194. PubMed ID: 26859326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora.
    Ueno Y; Sasaki D; Fukui H; Haruta S; Ishii M; Igarashi Y
    J Appl Microbiol; 2006 Aug; 101(2):331-43. PubMed ID: 16882140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of hydraulic retention time on the hydrogen yield and population of Clostridium in hydrogen fermentation of glucose.
    Chu C; Ebie Y; Inamori Y; Kong H
    J Environ Sci (China); 2009; 21(4):424-8. PubMed ID: 19634414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules.
    O'Reilly J; Chinalia FA; Mahony T; Collins G; Wu J; O'Flaherty V
    Lett Appl Microbiol; 2009 Oct; 49(4):421-6. PubMed ID: 19674296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel microbial community restructuring strategy for enhanced hydrogen production using multiple pretreatments and CSTR operation.
    Jiang J; Guo T; Wang J; Sun A; Chen X; Xu X; Dai S; Qin Z
    Environ Res; 2024 Jun; 251(Pt 2):118725. PubMed ID: 38518915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pH on hydrogen production from glucose by a mixed culture.
    Fang HH; Liu H
    Bioresour Technol; 2002 Mar; 82(1):87-93. PubMed ID: 11858207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability.
    Jensen PD; Astals S; Lu Y; Devadas M; Batstone DJ
    Water Res; 2014 Dec; 67():355-66. PubMed ID: 25459224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biohydrogen production at pH below 3.0: Is it possible?
    Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M
    Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste.
    Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I
    Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial diversity of a mesophilic hydrogen-producing sludge.
    Fang HH; Zhang T; Liu H
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):112-8. PubMed ID: 11833529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.