BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26254829)

  • 41. 2-Selenouridine, a Modified Nucleoside of Bacterial tRNAs, Its Reactivity in the Presence of Oxidizing and Reducing Reagents.
    Kulik K; Sadowska K; Wielgus E; Pacholczyk-Sienicka B; Sochacka E; Nawrot B
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of queuosine on tRNA structure and function.
    Morris RC; Brown KG; Elliott MS
    J Biomol Struct Dyn; 1999 Feb; 16(4):757-74. PubMed ID: 10217448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural significance of hypermodified nucleoside 5-carboxymethylaminomethyluridine (cmnm
    Kumbhar NM; Gopal JS
    J Mol Graph Model; 2019 Jan; 86():66-83. PubMed ID: 30336453
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conformational characteristics of 4-acetylcytidine found in tRNA.
    Kawai G; Hashizume T; Miyazawa T; McCloskey JA; Yokoyama S
    Nucleic Acids Symp Ser; 1989; (21):61-2. PubMed ID: 2608479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different Oxidation Pathways of 2-Selenouracil and 2-Thiouracil, Natural Components of Transfer RNA.
    Kulik K; Sadowska K; Wielgus E; Pacholczyk-Sienicka B; Sochacka E; Nawrot B
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 5-Methyl-2-thiouridine in the tRNA of Candida tropicalis and its localization in lysine tRNA.
    Patwardhan S; Cherayil JD
    J Bacteriol; 1985 Apr; 162(1):55-60. PubMed ID: 3845081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease.
    Yasukawa T; Suzuki T; Ishii N; Ohta S; Watanabe K
    EMBO J; 2001 Sep; 20(17):4794-802. PubMed ID: 11532943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of thiyl radicals by the photolysis of 5-iodo-4-thiouridine.
    Wenska G; Taras-Goślińska K; Skalski B; Hug GL; Carmichael I; Marciniak B
    J Org Chem; 2005 Feb; 70(3):982-8. PubMed ID: 15675858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient assessment of modified nucleoside stability under conditions of automated oligonucleotide synthesis: characterization of the oxidation and oxidative desulfurization of 2-thiouridine.
    Sochacka E
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(10-11):1871-9. PubMed ID: 11720000
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure and conformation of 5-fluorouridine: conformational preferences for 5-fluorinated pyranosides.
    Soni SD; Srikrishnan T
    Nucleosides Nucleotides Nucleic Acids; 2004; 23(11):1779-95. PubMed ID: 15598078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The synthesis of tRNA sup (UGA) anticodons with the 2-thiouridine derivatives as the 'first letter'.
    Małkiewicz AJ; Nawrot B; Sochacka E
    Nucleic Acids Symp Ser; 1987; (18):97-100. PubMed ID: 3697161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Orchestrating sulfur incorporation into RNA.
    Lauhon CT
    Nat Chem Biol; 2006 Apr; 2(4):182-3. PubMed ID: 16547479
    [No Abstract]   [Full Text] [Related]  

  • 54. Crystal and molecular structure of the acetonide of 5-methylaminomethyl-2-thiouridine: a minor constituent of Escherichia coli tRNAs.
    Kasai H; Nishimura S; Vorbrüggen H; Iitaka Y
    FEBS Lett; 1979 Jul; 103(2):270-3. PubMed ID: 381021
    [No Abstract]   [Full Text] [Related]  

  • 55. Studies toward the oxidative and reductive activation of C-S bonds in 2'-
    Rayala R; Giuglio-Tonolo A; Broggi J; Terme T; Vanelle P; Theard P; Médebielle M; Wnuk SF
    Tetrahedron; 2016 Apr; 72(16):1969-1977. PubMed ID: 27019535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Syntheses of potential antimetabolites. XX. Syntheses of 5-carbomethoxymethyl- and 5-methylaminomethyl-2-thiouridine (the "first letters" of some anticodons) and closely related nucleosides from uridine.
    Ikeda K; Tanaka S; Mizuno Y
    Chem Pharm Bull (Tokyo); 1975 Nov; 23(11):2958-64. PubMed ID: 1218441
    [No Abstract]   [Full Text] [Related]  

  • 57. The relationship between hydrogen bonding and base stacking in crystalline 4-thiouridine derivatives.
    Saenger W; Suck D
    Eur J Biochem; 1973 Feb; 32(3):473-8. PubMed ID: 4692221
    [No Abstract]   [Full Text] [Related]  

  • 58. 5-ethyl-2'-deoxy-4'-thiouridine (R)-S-oxide monohydrate.
    Sun M; Macculloch AC; Hamor TA; Walker RT
    Acta Crystallogr C; 2000 Jan; 56 ( Pt 1)():116-7. PubMed ID: 10710692
    [No Abstract]   [Full Text] [Related]  

  • 59. Formation of the [b+41]+. ion in the mass spectra of 2-thiouridines.
    Sochacki M; Sochacka E; Małkiewicz A
    Biomed Mass Spectrom; 1980 Jun; 7(6):257-8. PubMed ID: 7426689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reversible oxidative dimerization of 4-thiouridines in tRNA isolates.
    Bessler L; Groß J; Kampf CJ; Opatz T; Helm M
    RSC Chem Biol; 2024 Mar; 5(3):216-224. PubMed ID: 38456039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.