These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26254880)

  • 1. Bioprinting a cardiac valve.
    Jana S; Lerman A
    Biotechnol Adv; 2015 Dec; 33(8):1503-21. PubMed ID: 26254880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid manufacturing techniques for the tissue engineering of human heart valves.
    Lueders C; Jastram B; Hetzer R; Schwandt H
    Eur J Cardiothorac Surg; 2014 Oct; 46(4):593-601. PubMed ID: 25063052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting and its applications in tissue engineering and regenerative medicine.
    Aljohani W; Ullah MW; Zhang X; Yang G
    Int J Biol Macromol; 2018 Feb; 107(Pt A):261-275. PubMed ID: 28870749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinted Scaffolds for Cartilage Tissue Engineering.
    Kang HW; Yoo JJ; Atala A
    Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.
    Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE
    Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.
    Kang HW; Lee SJ; Ko IK; Kengla C; Yoo JJ; Atala A
    Nat Biotechnol; 2016 Mar; 34(3):312-9. PubMed ID: 26878319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
    Duan B
    Ann Biomed Eng; 2017 Jan; 45(1):195-209. PubMed ID: 27066785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions.
    Cheung DY; Duan B; Butcher JT
    Expert Opin Biol Ther; 2015; 15(8):1155-72. PubMed ID: 26027436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends.
    Ishack S; Lipner SR
    Dermatol Surg; 2020 Dec; 46(12):1500-1505. PubMed ID: 32205755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.
    Hart LR; Li S; Sturgess C; Wildman R; Jones JR; Hayes W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3115-22. PubMed ID: 26766139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.
    Bell A; Kofron M; Nistor V
    Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting and the current applications in tissue engineering.
    Huang Y; Zhang XF; Gao G; Yonezawa T; Cui X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28675678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffolds for tissue engineering of cardiac valves.
    Jana S; Tefft BJ; Spoon DB; Simari RD
    Acta Biomater; 2014 Jul; 10(7):2877-93. PubMed ID: 24675108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.
    Naghieh S; Karamooz-Ravari MR; Sarker MD; Karki E; Chen X
    J Mech Behav Biomed Mater; 2018 Apr; 80():111-118. PubMed ID: 29414466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional bioprinting: new horizon for cardiac surgery.
    Beyersdorf F
    Eur J Cardiothorac Surg; 2014 Sep; 46(3):339-41. PubMed ID: 25114025
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.