BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26255027)

  • 21. Role of bone marrow adipocytes in leukemia and chemotherapy challenges.
    Samimi A; Ghanavat M; Shahrabi S; Azizidoost S; Saki N
    Cell Mol Life Sci; 2019 Jul; 76(13):2489-2497. PubMed ID: 30715556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hypoxic tumor microenvironment: A driving force for breast cancer progression.
    Semenza GL
    Biochim Biophys Acta; 2016 Mar; 1863(3):382-391. PubMed ID: 26079100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells.
    Ahmed N; Escalona R; Leung D; Chan E; Kannourakis G
    Semin Cancer Biol; 2018 Dec; 53():265-281. PubMed ID: 30317036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exosome-mediated microenvironment dysregulation in leukemia.
    Kumar B; Garcia M; Murakami JL; Chen CC
    Biochim Biophys Acta; 2016 Mar; 1863(3):464-470. PubMed ID: 26384870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Bone Marrow NicheĀ - The Tumor Microenvironment That Ensures Leukemia Progression.
    Cardoso BA
    Adv Exp Med Biol; 2020; 1219():259-293. PubMed ID: 32130704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human bone marrow niche chemoprotection mediated by cytochrome P450 enzymes.
    Alonso S; Su M; Jones JW; Ganguly S; Kane MA; Jones RJ; Ghiaur G
    Oncotarget; 2015 Jun; 6(17):14905-12. PubMed ID: 25915157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Microenvironment of Lung Cancer and Therapeutic Implications.
    Mittal V; El Rayes T; Narula N; McGraw TE; Altorki NK; Barcellos-Hoff MH
    Adv Exp Med Biol; 2016; 890():75-110. PubMed ID: 26703800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104.
    Benito J; Shi Y; Szymanska B; Carol H; Boehm I; Lu H; Konoplev S; Fang W; Zweidler-McKay PA; Campana D; Borthakur G; Bueso-Ramos C; Shpall E; Thomas DA; Jordan CT; Kantarjian H; Wilson WR; Lock R; Andreeff M; Konopleva M
    PLoS One; 2011; 6(8):e23108. PubMed ID: 21853076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer.
    Ferguson LP; Diaz E; Reya T
    Trends Cancer; 2021 Jul; 7(7):624-634. PubMed ID: 33509688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.
    Benito J; Ramirez MS; Millward NZ; Velez J; Harutyunyan KG; Lu H; Shi YX; Matre P; Jacamo R; Ma H; Konoplev S; McQueen T; Volgin A; Protopopova M; Mu H; Lee J; Bhattacharya PK; Marszalek JR; Davis RE; Bankson JA; Cortes JE; Hart CP; Andreeff M; Konopleva M
    Clin Cancer Res; 2016 Apr; 22(7):1687-98. PubMed ID: 26603259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Microenvironment in Non-Hodgkin Lymphoma: Understanding the Composition and Biology.
    Khurana A; Ansell SM
    Cancer J; 2020; 26(3):206-216. PubMed ID: 32496454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.
    Taylor S; Spugnini EP; Assaraf YG; Azzarito T; Rauch C; Fais S
    Drug Resist Updat; 2015 Nov; 23():69-78. PubMed ID: 26341193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic regulation of the bone marrow microenvironment in leukemia.
    Xu B; Hu R; Liang Z; Chen T; Chen J; Hu Y; Jiang Y; Li Y
    Blood Rev; 2021 Jul; 48():100786. PubMed ID: 33353770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone marrow microenvironment confers imatinib resistance to chronic myelogenous leukemia and oroxylin A reverses the resistance by suppressing Stat3 pathway.
    Li X; Miao H; Zhang Y; Li W; Li Z; Zhou Y; Zhao L; Guo Q
    Arch Toxicol; 2015 Jan; 89(1):121-36. PubMed ID: 24671465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting the leukemia microenvironment.
    Konopleva M; Andreeff M
    Curr Drug Targets; 2007 Jun; 8(6):685-701. PubMed ID: 17584025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the microenvironment in acute myeloid leukemia.
    Rashidi A; Uy GL
    Curr Hematol Malig Rep; 2015 Jun; 10(2):126-31. PubMed ID: 25921388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapeutic Targeting of the Leukaemia Microenvironment.
    Kuek V; Hughes AM; Kotecha RS; Cheung LC
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immune ligands for cytotoxic T Lymphocytes (CTLS) in cancer stem cells (CSCS).
    Voutsadakis IA
    Front Biosci (Landmark Ed); 2018 Jan; 23(3):563-583. PubMed ID: 28930561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multistep targeted nano drug delivery system aiming at leukemic stem cells and minimal residual disease.
    Shi Y; Su Z; Li S; Chen Y; Chen X; Xiao Y; Sun M; Ping Q; Zong L
    Mol Pharm; 2013 Jun; 10(6):2479-89. PubMed ID: 23646913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.