These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2625503)

  • 1. 'Non-chronotropic' mechanisms on withdrawal of efferent vagal stimulation in anesthetized dogs.
    Cevese A; Verlato G; Cerutti G
    J Auton Nerv Syst; 1989 Nov; 28(2):155-65. PubMed ID: 2625503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamic effects of withdrawal of efferent cervical vagal stimulation on anesthetized dogs--relative importance of chronotropic and non-chronotropic mechanisms.
    Cevese A; Verlato G
    J Auton Nerv Syst; 1985 Oct; 14(2):125-36. PubMed ID: 4067179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length.
    Inoue H; Zipes DP
    Circ Res; 1987 Jun; 60(6):942-51. PubMed ID: 3594761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in vagal phasic chronotropic responses with sympathetic stimulation in the dog.
    Stuesse SL; Wallick DW; Zieske H; Levy MN
    Am J Physiol; 1981 Dec; 241(6):H850-6. PubMed ID: 7325253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vagal stimulation decreases left ventricular contractility mainly through negative chronotropic effect.
    Matsuura W; Sugimachi M; Kawada T; Sato T; Shishido T; Miyano H; Nakahara T; Ikeda Y; Alexander J; Sunagawa K
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H534-9. PubMed ID: 9277466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cervical efferent vagal stimulation related or unrelated to cardiac cycles: comparison of negative atrial inotropic effects.
    Cevese A; Poltronieri R; Schena F; Verlato G; Zaffagni C
    Boll Soc Ital Biol Sper; 1984 Nov; 60(11):2009-16. PubMed ID: 6525253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sympathetic tone on vagally induced phasic changes in heart rate and atrioventricular node conduction in the anesthetized dog.
    Salata JJ; Gill RM; Gilmour RF; Zipes DP
    Circ Res; 1986 Apr; 58(4):584-94. PubMed ID: 3698221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and anatomical variability of canine cardiac sympathetic efferent pathways: implications for regional denervation of the left ventricle.
    Janes RD; Johnstone DE; Brandys JC; Armour JA
    Can J Physiol Pharmacol; 1986 Jul; 64(7):958-69. PubMed ID: 3768801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.
    Dickerson LW; Rodak DJ; Fleming TJ; Gatti PJ; Massari VJ; McKenzie JC; Gillis RA
    J Auton Nerv Syst; 1998 May; 70(1-2):129-41. PubMed ID: 9686913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the atrial receptors responsible for a reflex increase in activity in efferent cardiac sympathetic nerves.
    Linden RJ; Mary DA; Weatherill D
    Q J Exp Physiol; 1982 Jan; 67(1):143-9. PubMed ID: 6281844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of vagal stimulation on left ventricular systolic and diastolic performance.
    Xenopoulos NP; Applegate RJ
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2167-73. PubMed ID: 8023978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of cardiac sympathetics in the tonic circulatory restraint by vagal afferents.
    Shimizu T; Peterson DF; Bishop VS
    Am J Physiol; 1979 Oct; 237(4):H528-34. PubMed ID: 495739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic modulation of vagal chronotropic and arrhythmogenic influences on the heart.
    Sheikh-Zade YR; Cherednik IL; Galenko-Yaroshevskii PA; Mukhambetaliev GKh
    Bull Exp Biol Med; 2002 Jun; 133(6):535-7. PubMed ID: 12447457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart rate-independent vagal effect on end-systolic elastance of the canine left ventricle under various levels of sympathetic tone.
    Nakayama Y; Miyano H; Shishido T; Inagaki M; Kawada T; Sugimachi M; Sunagawa K
    Circulation; 2001 Nov; 104(19):2277-9. PubMed ID: 11696465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction.
    Vanoli E; De Ferrari GM; Stramba-Badiale M; Hull SS; Foreman RD; Schwartz PJ
    Circ Res; 1991 May; 68(5):1471-81. PubMed ID: 2019002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal stimulation attenuates sympathetic enhancement of left ventricular function.
    Henning RJ; Khalil IR; Levy MN
    Am J Physiol; 1990 May; 258(5 Pt 2):H1470-5. PubMed ID: 2337181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cardiac sympathetic and vagal efferent activity during reflex responses produced by stretch of the atria.
    Kollai M; Koizumi K; Yamashita H; Brooks CM
    Brain Res; 1978 Jul; 150(3):519-32. PubMed ID: 678988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phase-dependency of the cardiac chronotropic responses to vagal stimulation as a factor in sympathetic-vagal interactions.
    Yang T; Levy MN
    Circ Res; 1984 Jun; 54(6):703-10. PubMed ID: 6733865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of intense antecedent sympathetic stimulation on sympathetic neurotransmission in the heart.
    Yang T; Levy MN
    Circ Res; 1993 Jan; 72(1):137-44. PubMed ID: 8380260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heart as a biological clock: phase-locking between heart and efferent vagal activity.
    Schena F; Poltronieri R; Verlato G; Cevese A
    Funct Neurol; 1990; 5(3):247-9. PubMed ID: 2283097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.