These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26255041)

  • 1. Cellular bioenergetics of guanidinoacetic acid: the role of mitochondria.
    Ostojic SM
    J Bioenerg Biomembr; 2015 Oct; 47(5):369-72. PubMed ID: 26255041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanidinoacetic acid deficiency: a new entity in clinical medicine?
    Ostojic SM; Ratgeber L; Olah A; Betlehem J; Acs P
    Int J Med Sci; 2020; 17(16):2544-2550. PubMed ID: 33029096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-administration of creatine and guanidinoacetic acid for augmented tissue bioenergetics: A novel approach?
    Ostojic SM
    Biomed Pharmacother; 2017 Jul; 91():238-240. PubMed ID: 28460226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced physiological roles of guanidinoacetic acid.
    Ostojic SM
    Eur J Nutr; 2015 Dec; 54(8):1211-5. PubMed ID: 26411433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tackling guanidinoacetic acid for advanced cellular bioenergetics.
    Ostojic SM
    Nutrition; 2017 Feb; 34():55-57. PubMed ID: 28063512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety of Dietary Guanidinoacetic Acid: A Villain of a Good Guy?
    Ostojic SM
    Nutrients; 2021 Dec; 14(1):. PubMed ID: 35010949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary guanidinoacetic acid increases brain creatine levels in healthy men.
    Ostojic SM; Ostojic J; Drid P; Vranes M; Jovanov P
    Nutrition; 2017 Jan; 33():149-156. PubMed ID: 27497517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits and drawbacks of guanidinoacetic acid as a possible treatment to replenish cerebral creatine in AGAT deficiency.
    Ostojic SM
    Nutr Neurosci; 2019 May; 22(5):302-305. PubMed ID: 28971744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.
    Baldissera MD; Souza CF; JĂșnior GB; Verdi CM; Moreira KLS; da Rocha MIUM; da Veiga ML; Santos RCV; Vizzotto BS; Baldisserotto B
    Microb Pathog; 2017 Sep; 110():439-443. PubMed ID: 28735082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanidinoacetic acid with creatine compared with creatine alone for tissue creatine content, hyperhomocysteinemia, and exercise performance: A randomized, double-blind superiority trial.
    Semeredi S; Stajer V; Ostojic J; Vranes M; Ostojic SM
    Nutrition; 2019 Jan; 57():162-166. PubMed ID: 30170305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dietary guanidinoacetic acid on growth performance, guanidinoacetic acid absorption and creatine metabolism of lambs.
    Zhang S; Zang C; Pan J; Ma C; Wang C; Li X; Cai W; Yang K
    PLoS One; 2022; 17(3):e0264864. PubMed ID: 35275964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that the inhibitory effects of guanidinoacetate on the activities of the respiratory chain, Na+,K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo.
    Zugno AI; Scherer EB; Mattos C; Ribeiro CA; Wannmacher CM; Wajner M; Wyse AT
    Biochim Biophys Acta; 2007 May; 1772(5):563-9. PubMed ID: 17407807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism.
    Lowe MT; Kim EH; Faull RL; Christie DL; Waldvogel HJ
    J Cereb Blood Flow Metab; 2013 Aug; 33(8):1295-306. PubMed ID: 23715059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementation with Guanidinoacetic Acid in Women with Chronic Fatigue Syndrome.
    Ostojic SM; Stojanovic M; Drid P; Hoffman JR; Sekulic D; Zenic N
    Nutrients; 2016 Jan; 8(2):72. PubMed ID: 26840330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-administration of methyl donors along with guanidinoacetic acid reduces the incidence of hyperhomocysteinaemia compared with guanidinoacetic acid administration alone.
    Ostojic SM; Niess B; Stojanovic M; Obrenovic M
    Br J Nutr; 2013 Sep; 110(5):865-70. PubMed ID: 23351309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocellular creatine and creatine transporter serine phosphorylation after starvation.
    Zhao CR; Shang L; Wang W; Jacobs DO
    J Surg Res; 2002 Jun; 105(1):10-6. PubMed ID: 12069495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human skeletal muscle contains no detectable guanidinoacetic acid.
    Ostojic SM; Ostojic J
    Appl Physiol Nutr Metab; 2018 Jun; 43(6):647-649. PubMed ID: 29406829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative mechanism for guanidinoacetic acid to affect methylation cycle.
    Ostojic SM
    Med Hypotheses; 2014 Dec; 83(6):847-8. PubMed ID: 25468046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanidinoacetic acid loading for improved location-specific brain creatine.
    Ostojic SM
    Clin Nutr; 2021 Jan; 40(1):324-326. PubMed ID: 32439266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.