These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26255362)
1. Tailoring biocontrol to maximize top-down effects: on the importance of underlying site fertility. Hovick SM; Carson WP Ecol Appl; 2015 Jan; 25(1):125-39. PubMed ID: 26255362 [TBL] [Abstract][Full Text] [Related]
2. Matrix habitat and plant damage influence colonization of purple loosestrife patches by specialist leaf-beetles. Dávalos A; Blossey B Environ Entomol; 2011 Oct; 40(5):1074-80. PubMed ID: 22251719 [TBL] [Abstract][Full Text] [Related]
3. No evidence that rapid adaptation impedes biological control of an invasive plant. Stastny M; Russell-Mercier JL; Sargent RD Evol Appl; 2020 Oct; 13(9):2472-2483. PubMed ID: 33005235 [TBL] [Abstract][Full Text] [Related]
4. Demographic models inform selection of biocontrol agents for garlic mustard (Alliaria petiolata). Davis AS; Landis DA; Nuzzo V; Blossey B; Gerber E; Hinz HL Ecol Appl; 2006 Dec; 16(6):2399-410. PubMed ID: 17205913 [TBL] [Abstract][Full Text] [Related]
5. Bookkeeping of insect herbivory trends in herbarium specimens of purple loosestrife ( Beaulieu C; Lavoie C; Proulx R Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455215 [TBL] [Abstract][Full Text] [Related]
6. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Schooler SS; McEvoy PB; Hammond P; Coombs EM Bull Entomol Res; 2009 Jun; 99(3):229-43. PubMed ID: 18947450 [TBL] [Abstract][Full Text] [Related]
7. Lower resistance and higher tolerance of invasive host plants: biocontrol agents reach high densities but exert weak control. Wang Y; Huang W; Siemann E; Zou J; Wheeler GS; Carrillo J; Ding J Ecol Appl; 2011 Apr; 21(3):729-38. PubMed ID: 21639040 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicaria L.). David AS; Quiram GL; Sirota JI; Seabloom EW Mycologia; 2016; 108(4):625-37. PubMed ID: 27091387 [TBL] [Abstract][Full Text] [Related]
9. Evidence for rapid evolutionary change in an invasive plant in response to biological control. Stastny M; Sargent RD J Evol Biol; 2017 May; 30(5):1042-1052. PubMed ID: 28370749 [TBL] [Abstract][Full Text] [Related]
10. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides. Lowe TP; Hershberger TD Environ Toxicol Chem; 2004 Jul; 23(7):1662-71. PubMed ID: 15230319 [TBL] [Abstract][Full Text] [Related]
11. Response to enemies in the invasive plant Lythrum salicaria is genetically determined. Joshi S; Tielbörger K Ann Bot; 2012 Nov; 110(7):1403-10. PubMed ID: 22492331 [TBL] [Abstract][Full Text] [Related]
12. Mass rearing the weevil Hylobius transversovittatus (Coleoptera: Curculionidae), biological control agent of Lythrum salicaria, on semiartificial diet. Blossey B; Eberts D; Morrison E; Hunt TR J Econ Entomol; 2000 Dec; 93(6):1644-56. PubMed ID: 11142294 [TBL] [Abstract][Full Text] [Related]
13. Indirect effects of herbivory on plant-pollinator interactions in invasive Lythrum salicaria. Russell-Mercier JL; Sargent RD Am J Bot; 2015 May; 102(5):661-8. PubMed ID: 26022480 [TBL] [Abstract][Full Text] [Related]
14. A native plant competitor mediates the impact of above- and belowground damage on an invasive tree. Carrillo J; Siemann E Ecol Appl; 2016 Oct; 26(7):2060-2071. PubMed ID: 27755734 [TBL] [Abstract][Full Text] [Related]
16. Evidence of hybridization between Lythrum salicaria (purple loosestrife) and L. alatum (winged loosestrife) in North America. Houghton-Thompson J; Prince HH; Smith JJ; Hancock JF Ann Bot; 2005 Oct; 96(5):877-85. PubMed ID: 16081495 [TBL] [Abstract][Full Text] [Related]
17. Population-level compensation impedes biological control of an invasive forb and indirect release of a native grass. Ortega YK; Pearson DE; Waller LP; Sturdevant NJ; Maron JL Ecology; 2012 Apr; 93(4):783-92. PubMed ID: 22690629 [TBL] [Abstract][Full Text] [Related]
18. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Gardiner MM; Landis DA; Gratton C; DiFonzo CD; O'Neal M; Chacon JM; Wayo MT; Schmidt NP; Mueller EE; Heimpel GE Ecol Appl; 2009 Jan; 19(1):143-54. PubMed ID: 19323179 [TBL] [Abstract][Full Text] [Related]
19. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites. González E; Sher AA; Anderson RM; Bay RF; Bean DW; Bissonnete GJ; Bourgeois B; Cooper DJ; Dohrenwend K; Eichhorst KD; El Waer H; Kennard DK; Harms-Weissinger R; Henry AL; Makarick LJ; Ostoja SM; Reynolds LV; Robinson WW; Shafroth PB Ecol Appl; 2017 Sep; 27(6):1789-1804. PubMed ID: 28445000 [TBL] [Abstract][Full Text] [Related]
20. Variable effects of a generalist parasitoid on a biocontrol seed predator and its target weed. Swope SM; Satterthwaite WH Ecol Appl; 2012 Jan; 22(1):20-34. PubMed ID: 22471073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]