These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26255363)

  • 1. Biofuel intercropping effects on soil carbon and microbial activity.
    Strickland MS; Leggett ZH; Sucre EB; Bradford MA
    Ecol Appl; 2015 Jan; 25(1):140-50. PubMed ID: 26255363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial nitrogen cycling response to forest-based bioenergy production.
    Minick KJ; Strahm BD; Fox TR; Sucre EB; Leggett ZH
    Ecol Appl; 2015 Dec; 25(8):2366-81. PubMed ID: 26910961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts on soil nitrogen availability of converting managed pine plantation into switchgrass monoculture for bioenergy.
    Cacho JF; Youssef MA; Shi W; Chescheir GM; Skaggs RW; Tian S; Leggett ZH; Sucre EB; Nettles JE; Arellano C
    Sci Total Environ; 2019 Mar; 654():1326-1336. PubMed ID: 30841405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.
    Campbell JW; Miller DA; Martin JA
    Insects; 2016 Nov; 7(4):. PubMed ID: 27827916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of forest-based bioenergy feedstock production on shallow groundwater quality of a drained forest soil.
    Cacho JF; Youssef MA; Chescheir GM; Wayne Skaggs R; Appelboom TW; Leggett ZH; Sucre EB; Nettles JE; Arellano C
    Sci Total Environ; 2018 Aug; 631-632():13-22. PubMed ID: 29518723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.
    Lu X; Withers MR; Seifkar N; Field RP; Barrett SR; Herzog HJ
    Bioresour Technol; 2015 May; 183():1-9. PubMed ID: 25710677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly.
    Beschoren da Costa P; Benucci GMN; Chou MY; Van Wyk J; Chretien M; Bonito G
    mBio; 2022 Apr; 13(2):e0007922. PubMed ID: 35384699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold dynamics in soil carbon storage for bioenergy crops.
    Woo DK; Quijano JC; Kumar P; Chaoka S; Bernacchi CJ
    Environ Sci Technol; 2014 Oct; 48(20):12090-8. PubMed ID: 25207669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Biomass Carbon and Soil Organic Carbon Stocks following the Conversion from a Secondary Coniferous Forest to a Pine Plantation.
    Li S; Su J; Liu W; Lang X; Huang X; Jia C; Zhang Z; Tong Q
    PLoS One; 2015; 10(9):e0135946. PubMed ID: 26397366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial forecasting of switchgrass productivity under current and future climate change scenarios.
    Behrman KD; Kiniry JR; Winchell M; Juenger TE; Keitt TH
    Ecol Appl; 2013 Jan; 23(1):73-85. PubMed ID: 23495637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of alfalfa-switchgrass intercropping on microbial community structure and function.
    Cha G; Meinhardt KA; Orellana LH; Hatt JK; Pannu MW; Stahl DA; Konstantinidis KT
    Environ Microbiol; 2021 Nov; 23(11):6828-6843. PubMed ID: 34554631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.
    Manoli G; Domec JC; Novick K; Oishi AC; Noormets A; Marani M; Katul G
    Glob Chang Biol; 2016 Jun; 22(6):2238-54. PubMed ID: 26762609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.
    Evans SG; Ramage BS; DiRocco TL; Potts MD
    Environ Sci Technol; 2015 Feb; 49(4):2503-11. PubMed ID: 25582654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.
    Dar JA; Sundarapandian S
    Environ Monit Assess; 2015 Feb; 187(2):55. PubMed ID: 25638061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grass invasion effects on forest soil carbon depend on landscape-level land use patterns.
    Craig ME; Pearson SM; Fraterrigo JM
    Ecology; 2015 Aug; 96(8):2265-79. PubMed ID: 26405751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [oil microbial biomass and enzyme activities among different artificial forests in Ziwuling, Northwest China.].
    Bai XJ; Zeng QC; An SS; Zhang HX; Wang BR
    Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2695-2704. PubMed ID: 30182610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.
    Phillips RP; Finzi AC; Bernhardt ES
    Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the impacts of landscape positions and nitrogen fertilizer rates on dissolved organic carbon on switchgrass land seeded on marginally yielding cropland.
    Lai L; Kumar S; Mbonimpa EG; Hong CO; Owens VN; Neupane RP
    J Environ Manage; 2016 Apr; 171():113-120. PubMed ID: 26861225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.