These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26255364)

  • 21. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.
    Jones TA; Chumchal MM; Drenner RW; Timmins GN; Nowlin WH
    Environ Toxicol Chem; 2013 Mar; 32(3):612-8. PubMed ID: 23180684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in methylmercury and inorganic mercury biomagnification in a tropical marine food web.
    Seixas TG; Moreira I; Siciliano S; Malm O; Kehrig HA
    Bull Environ Contam Toxicol; 2014 Mar; 92(3):274-8. PubMed ID: 24452478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation.
    Chasar LC; Scudder BC; Stewart AR; Bell AH; Aiken GR
    Environ Sci Technol; 2009 Apr; 43(8):2733-9. PubMed ID: 19475942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir.
    Carrasco L; Benejam L; Benito J; Bayona JM; Díez S
    Environ Int; 2011 Oct; 37(7):1213-8. PubMed ID: 21658770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do low-mercury terrestrial resources subsidize low-mercury growth of stream fish? Differences between species along a productivity gradient.
    Ward DM; Nislow KH; Folt CL
    PLoS One; 2012; 7(11):e49582. PubMed ID: 23166717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs.
    Kraus JM; Schmidt TS; Walters DM; Wanty RB; Zuellig RE; Wolf RE
    Ecol Appl; 2014 Mar; 24(2):235-43. PubMed ID: 24689137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trophic transfer of mercury and methylmercury in an aquatic ecosystem impacted by municipal sewage effluents in Beijing, China.
    Fu J; Wang Y; Zhou Q; Jiang G
    J Environ Sci (China); 2010; 22(8):1189-94. PubMed ID: 21179957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention.
    de Wit HA; Kainz MJ; Lindholm M
    Environ Pollut; 2012 May; 164():235-41. PubMed ID: 22377901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish.
    Bowling AM; Hammerschmidt CR; Oris JT
    Aquat Toxicol; 2011 Apr; 102(3-4):134-41. PubMed ID: 21356175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America.
    Chételat J; Amyot M; Garcia E
    Environ Pollut; 2011 Jan; 159(1):10-17. PubMed ID: 20965629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The distance that contaminated aquatic subsidies extend into lake riparian zones.
    Raikow DF; Walters DM; Fritz KM; Mills MA
    Ecol Appl; 2011 Apr; 21(3):983-90. PubMed ID: 21639060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations.
    Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K
    Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading.
    Jeremiason JD; Reiser TK; Weitz RA; Berndt ME; Aiken GR
    Ecotoxicology; 2016 Apr; 25(3):456-68. PubMed ID: 26738880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA).
    Newman MC; Xu X; Condon A; Liang L
    Environ Pollut; 2011 Oct; 159(10):2840-4. PubMed ID: 21621888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The movement of aquatic mercury through terrestrial food webs.
    Cristol DA; Brasso RL; Condon AM; Fovargue RE; Friedman SL; Hallinger KK; Monroe AP; White AE
    Science; 2008 Apr; 320(5874):335. PubMed ID: 18420925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (delta13C and delta15N).
    Al-Reasi HA; Ababneh FA; Lean DR
    Environ Toxicol Chem; 2007 Aug; 26(8):1572-81. PubMed ID: 17702328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allochthonous aquatic subsidies alleviate predation pressure in terrestrial ecosystems.
    Recalde FC; Breviglieri CPB; Romero GQ
    Ecology; 2020 Aug; 101(8):e03074. PubMed ID: 32304220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inorganic and methylmercury: do they transfer along a tropical coastal food web?
    Kehrig HA; Seixas TG; Baêta AP; Malm O; Moreira I
    Mar Pollut Bull; 2010 Dec; 60(12):2350-6. PubMed ID: 20951393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using tissue cysteine to predict the trophic transfer of methylmercury and selenium in lake food webs.
    Thera JC; Kidd KA; Stewart AR; Bertolo RF; O'Driscoll NJ
    Environ Pollut; 2022 Oct; 311():119936. PubMed ID: 35964789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.
    Lescord GL; Kidd KA; Kirk JL; O'Driscoll NJ; Wang X; Muir DC
    Sci Total Environ; 2015 Mar; 509-510():195-205. PubMed ID: 24909711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.