These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26255600)

  • 21. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.
    Macrelli S; Galbe M; Wallberg O
    Biotechnol Biofuels; 2014 Feb; 7(1):26. PubMed ID: 24559312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast selection for fuel ethanol production in Brazil.
    Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML
    FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process.
    Macrelli S; Mogensen J; Zacchi G
    Biotechnol Biofuels; 2012 Apr; 5():22. PubMed ID: 22502801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Second generation ethanol in Brazil: can it compete with electricity production?
    Dias MO; Cunha MP; Jesus CD; Rocha GJ; Pradella JG; Rossell CE; Filho RM; Bonomi A
    Bioresour Technol; 2011 Oct; 102(19):8964-71. PubMed ID: 21795041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brazilian bioethanol program.
    Zanin GM; Santana CC; Bon EP; Giordano RC; de Moraes FF; Andrietta SR; de Carvalho Neto CC; Macedo IC; Fo DL; Ramos LP; Fontana JD
    Appl Biochem Biotechnol; 2000; 84-86():1147-61. PubMed ID: 10849865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brazil and Japan give fuel to ethanol market.
    Orellana C; Neto RB
    Nat Biotechnol; 2006 Mar; 24(3):232. PubMed ID: 16525366
    [No Abstract]   [Full Text] [Related]  

  • 27. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.
    Fernández-López CL; Torrestiana-Sánchez B; Salgado-Cervantes MA; García PG; Aguilar-Uscanga MG
    Bioprocess Biosyst Eng; 2012 May; 35(4):605-14. PubMed ID: 21971607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.
    Sánchez ÓJ; Cardona CA
    Bioresour Technol; 2012 Jan; 104():305-14. PubMed ID: 22137752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates.
    Pereira LF; Lucatti E; Basso LC; de Morais MA
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle environmental impacts of bioethanol production from sugarcane molasses in Iran.
    Farahani SS; Asoodar MA
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22547-22556. PubMed ID: 28804804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field to fuel: developing sustainable biorefineries.
    Jenkins R; Alles C
    Ecol Appl; 2011 Jun; 21(4):1096-104. PubMed ID: 21774416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses.
    Hatano K; Kikuchi S; Nakamura Y; Sakamoto H; Takigami M; Kojima Y
    Bioresour Technol; 2009 Oct; 100(20):4697-703. PubMed ID: 19467586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expansion of sugarcane ethanol production in Brazil: environmental and social challenges.
    Martinelli LA; Filoso S
    Ecol Appl; 2008 Jun; 18(4):885-98. PubMed ID: 18536250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sugarcane-Biorefinery.
    Vaz S
    Adv Biochem Eng Biotechnol; 2019; 166():125-136. PubMed ID: 28303295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential of microalgae biorefineries in Belgium and India: An environmental techno-economic assessment.
    Thomassen G; Van Dael M; Van Passel S
    Bioresour Technol; 2018 Nov; 267():271-280. PubMed ID: 30025324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii.
    Calabia BP; Tokiwa Y
    Biotechnol Lett; 2007 Sep; 29(9):1329-32. PubMed ID: 17541505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Process engineering economics of bioethanol production.
    Galbe M; Sassner P; Wingren A; Zacchi G
    Adv Biochem Eng Biotechnol; 2007; 108():303-27. PubMed ID: 17541520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life cycle energy-carbon-water footprints of sugar, ethanol and electricity from sugarcane.
    Hiloidhari M; Haran S; Banerjee R; Rao AB
    Bioresour Technol; 2021 Jun; 330():125012. PubMed ID: 33773265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae.
    Xu W; Liang L; Song Z; Zhu M
    Biotechnol Appl Biochem; 2014; 61(3):289-96. PubMed ID: 24164318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and analysis of a second and third generation biorefinery: The case of castorbean and microalgae.
    Moncada J; Cardona CA; Rincón LE
    Bioresour Technol; 2015 Dec; 198():836-43. PubMed ID: 26457832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.