These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26255787)

  • 1. Numerical modeling of heart valves using resistive Eulerian surfaces.
    Laadhari A; Quarteroni A
    Int J Numer Method Biomed Eng; 2016 May; 32(5):. PubMed ID: 26255787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust and efficient valve model based on resistive immersed surfaces.
    Astorino M; Hamers J; Shadden SC; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012 Sep; 28(9):937-59. PubMed ID: 22941924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Accuracy of Structural and FSI Heart Valves Simulations.
    Luraghi G; Migliavacca F; Rodriguez Matas JF
    Cardiovasc Eng Technol; 2018 Dec; 9(4):723-738. PubMed ID: 30132282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transversally enriched pipe element method (TEPEM): An effective numerical approach for blood flow modeling.
    Mansilla Alvarez L; Blanco P; Bulant C; Dari E; Veneziani A; Feijóo R
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27302372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.
    Gharaie SH; Mosadegh B; Morsi Y
    Cardiovasc Eng Technol; 2018 Mar; 9(1):42-52. PubMed ID: 29322329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases.
    This A; Boilevin-Kayl L; Fernández MA; Gerbeau JF
    Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3223. PubMed ID: 31206245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of pathologic venous valve on neighboring valves: fluid-structure interactions modeling.
    Soifer E; Weiss D; Marom G; Einav S
    Med Biol Eng Comput; 2017 Jun; 55(6):991-999. PubMed ID: 27663560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-linear rotation-free shell finite-element models for aortic heart valves.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech; 2017 Jan; 50():56-62. PubMed ID: 27876370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves.
    Korakianitis T; Shi Y
    J Biomech; 2006; 39(11):1964-82. PubMed ID: 16140309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model.
    Müller LO; Blanco PJ; Watanabe SM; Feijóo RA
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26695621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method.
    Choi CR; Kim CN
    ASAIO J; 2009; 55(5):428-37. PubMed ID: 19730001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve.
    De Hart J; Peters GW; Schreurs PJ; Baaijens FP
    J Biomech; 2003 Jan; 36(1):103-12. PubMed ID: 12485644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry.
    Ge L; Jones SC; Sotiropoulos F; Healy TM; Yoganathan AP
    J Biomech Eng; 2003 Oct; 125(5):709-18. PubMed ID: 14618930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model.
    Gilmanov A; Stolarski H; Sotiropoulos F
    J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.
    Fedele M; Faggiano E; Dedè L; Quarteroni A
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1779-1803. PubMed ID: 28593469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
    Loerakker S; Argento G; Oomens CW; Baaijens FP
    J Biomech; 2013 Jul; 46(11):1792-800. PubMed ID: 23786664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.
    Aggarwal A; Sacks MS
    Biomech Model Mechanobiol; 2016 Aug; 15(4):909-32. PubMed ID: 26449480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.