These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26255809)

  • 1. Droplet-Array (DA) Sandwich Chip: A Versatile Platform for High-Throughput Cell Screening Based on Superhydrophobic-Superhydrophilic Micropatterning.
    Popova AA; Schillo SM; Demir K; Ueda E; Nesterov-Mueller A; Levkin PA
    Adv Mater; 2015 Sep; 27(35):5217-22. PubMed ID: 26255809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.
    Ueda E; Feng W; Levkin PA
    Adv Healthc Mater; 2016 Oct; 5(20):2646-2654. PubMed ID: 27568500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic-superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays.
    Geyer FL; Ueda E; Liebel U; Grau N; Levkin PA
    Angew Chem Int Ed Engl; 2011 Aug; 50(36):8424-7. PubMed ID: 21751312
    [No Abstract]   [Full Text] [Related]  

  • 4. Acoustic Droplet-Assisted Superhydrophilic-Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids.
    Xia Y; Chen H; Li J; Hu H; Qian Q; He RX; Ding Z; Guo SS
    ACS Appl Mater Interfaces; 2021 May; 13(20):23489-23501. PubMed ID: 33983701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.
    Tronser T; Popova AA; Jaggy M; Bastmeyer M; Levkin PA
    Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 28961385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays.
    Wang Y; Wu Y; Chen Y; Zhang J; Chen X; Liu P
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomolar Synthesis in Droplet Microarrays with UV-Triggered On-Chip Cell Screening.
    Brehm M; Heissler S; Afonin S; Levkin PA
    Small; 2020 Mar; 16(10):e1905971. PubMed ID: 31985878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.
    Mao M; He J; Lu Y; Li X; Li T; Zhou W; Li D
    Biofabrication; 2018 Feb; 10(2):025008. PubMed ID: 29350200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet microarray: miniaturized platform for rapid formation and high-throughput screening of embryoid bodies.
    Tronser T; Demir K; Reischl M; Bastmeyer M; Levkin PA
    Lab Chip; 2018 Jul; 18(15):2257-2269. PubMed ID: 29978866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DropletMicroarray: facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications.
    Ueda E; Geyer FL; Nedashkivska V; Levkin PA
    Lab Chip; 2012 Dec; 12(24):5218-24. PubMed ID: 23114283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening.
    Xu JG; Huang MS; Wang HF; Fang Q
    Anal Chem; 2019 Aug; 91(16):10757-10763. PubMed ID: 31335121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3-D microfluidic combinatorial cell array.
    Liu MC; Tai YC
    Biomed Microdevices; 2011 Feb; 13(1):191-201. PubMed ID: 21063783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Controllable Cell Array Printing Technique on Microfluidic Chips.
    Mi S; Yang S; Liu T; Du Z; Xu Y; Li B; Sun W
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2512-2520. PubMed ID: 30624208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications.
    Witters D; Vergauwe N; Vermeir S; Ceyssens F; Liekens S; Puers R; Lammertyn J
    Lab Chip; 2011 Aug; 11(16):2790-4. PubMed ID: 21720645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography.
    Komori K; Nada J; Nishikawa M; Notsu H; Tatsuma T; Sakai Y
    Anal Chim Acta; 2009 Oct; 653(2):222-7. PubMed ID: 19808118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Droplet Array System for Cell-Based Drug Combination Screening.
    Du GS; Pan JZ; Zhao SP; Zhu Y; den Toonder JMJ; Fang Q
    Methods Mol Biol; 2018; 1771():203-211. PubMed ID: 29633215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.