BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 26255905)

  • 1. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.
    Hibi Y; Tomigashi A; Hirose M
    J Contam Hydrol; 2015 Dec; 183():121-34. PubMed ID: 26583741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water-atmosphere system and the subsurface.
    Hibi Y
    J Contam Hydrol; 2020 Oct; 234():103688. PubMed ID: 32745797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the salt concentration distribution in surface water (seawater) due to seawater recirculation in a porous medium under tidal fluctuations.
    Hibi Y
    J Contam Hydrol; 2022 Dec; 251():104090. PubMed ID: 36265265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration behaviour of LNAPL in fractures filled with porous media: Laboratory experiments and numerical simulations.
    Shen H; Huang Y; Illman WA; Su Y; Miao K
    J Contam Hydrol; 2023 Feb; 253():104118. PubMed ID: 36563651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media.
    Blessent D; Jørgensen PR; Therrien R
    Ground Water; 2014; 52(1):84-95. PubMed ID: 23461382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.
    De Biase C; Carminati A; Oswald SE; Thullner M
    J Contam Hydrol; 2013 Nov; 154():53-69. PubMed ID: 24090736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional saltwater-freshwater fingering in porous media: contrast agent MRI as basis for numerical simulations.
    Oswald SE; Spiegel MA; Kinzelbach W
    Magn Reson Imaging; 2007 May; 25(4):537-40. PubMed ID: 17466782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable-density flow in heterogeneous porous media--laboratory experiments and numerical simulations.
    Konz M; Younes A; Ackerer P; Fahs M; Huggenberger P; Zechner E
    J Contam Hydrol; 2009 Sep; 108(3-4):168-75. PubMed ID: 19674812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental sensitivity analysis of oxygen transfer in the capillary fringe.
    Haberer CM; Cirpka OA; Rolle M; Grathwohl P
    Ground Water; 2014; 52(1):37-49. PubMed ID: 23406417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of water table fluctuation on LNAPL deposit in highly permeable porous media: A coupled numerical and experimental study.
    Koohbor B; Colombano S; Harrouet T; Deparis J; Lion F; Davarzani D; Ataie-Ashtiani B
    J Contam Hydrol; 2023 May; 256():104183. PubMed ID: 37116372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully coupled porous media and channels flow approach for simulation of blood and bile flow through the liver lobules.
    Mosharaf-Dehkordi M
    Comput Methods Biomech Biomed Engin; 2019 Jul; 22(9):901-915. PubMed ID: 31124725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective groundwater management strategy under uncertainties for sustainable control of saltwater intrusion: Solution for an island country in the South Pacific.
    Lal A; Datta B
    J Environ Manage; 2019 Mar; 234():115-130. PubMed ID: 30616183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation.
    Devlin JF
    J Contam Hydrol; 2016 Sep; 192():140-145. PubMed ID: 27454892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore scale modelling of DNAPL migration in a water-saturated porous medium.
    Nsir K; Schäfer G; di Chiara Roupert R; Mercury L
    J Contam Hydrol; 2018 Aug; 215():39-50. PubMed ID: 30060891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.