BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26256002)

  • 1. Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator.
    Chandrashekar BN; Deng B; Smitha AS; Chen Y; Tan C; Zhang H; Peng H; Liu Z
    Adv Mater; 2015 Sep; 27(35):5210-6. PubMed ID: 26256002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes.
    Deng B; Hsu PC; Chen G; Chandrashekar BN; Liao L; Ayitimuda Z; Wu J; Guo Y; Lin L; Zhou Y; Aisijiang M; Xie Q; Cui Y; Liu Z; Peng H
    Nano Lett; 2015 Jun; 15(6):4206-13. PubMed ID: 26020567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Facile Route to Flexible and Semi-Transparent Electrodes Based on Water Exfoliated Graphene and their Single-Electrode Triboelectric Nanogenerator.
    Shin DW; Barnes MD; Walsh K; Dimov D; Tian P; Neves AIS; Wright CD; Yu SM; Yoo JB; Russo S; Craciun MF
    Adv Mater; 2018 Sep; 30(39):e1802953. PubMed ID: 30141202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Engineering of Graphene Composite Transparent Electrodes for High-Performance Flexible Triboelectric Nanogenerators and Self-Powered Sensors.
    Yang J; Liu P; Wei X; Luo W; Yang J; Jiang H; Wei D; Shi R; Shi H
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36017-36025. PubMed ID: 28937733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Universal Stamping Method of Graphene Transfer for Conducting Flexible and Transparent Polymers.
    Chandrashekar BN; Smitha AS; Wu Y; Cai N; Li Y; Huang Z; Wang W; Shi R; Wang J; Liu S; Krishnaveni S; Wang F; Cheng C
    Sci Rep; 2019 Mar; 9(1):3999. PubMed ID: 30850663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot-Roll-Pressing Mediated Transfer of Chemical Vapor Deposition Graphene for Transparent and Flexible Touch Screen with Low Sheet-Resistance.
    Guo C; Kong X; Ji H
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4337-4342. PubMed ID: 29442784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminated Laser-Induced Graphene Composites.
    Li JT; Stanford MG; Chen W; Presutti SE; Tour JM
    ACS Nano; 2020 Jul; 14(7):7911-7919. PubMed ID: 32441916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective mechanical transfer of graphene from seed copper foil using rate effects.
    Na SR; Suk JW; Tao L; Akinwande D; Ruoff RS; Huang R; Liechti KM
    ACS Nano; 2015 Feb; 9(2):1325-35. PubMed ID: 25646863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-assisted exfoliation (MAE): green, roll-to-roll compatible method for transferring graphene to flexible substrates.
    Zaretski AV; Moetazedi H; Kong C; Sawyer EJ; Savagatrup S; Valle E; O'Connor TF; Printz AD; Lipomi DJ
    Nanotechnology; 2015 Jan; 26(4):045301. PubMed ID: 25556527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Integrity Preserving and Residue-Free Transfer of Large-Area Wrinkled Graphene onto Polymeric Substrates.
    Narute P; Sharbidre RS; Lee CJ; Park BC; Jung HJ; Kim JH; Hong SG
    ACS Nano; 2022 Jun; 16(6):9871-9882. PubMed ID: 35666252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable and Stretchable Triboelectric Nanogenerator Based on Crumpled Nanofibrous Membranes.
    Qin Z; Yin Y; Zhang W; Li C; Pan K
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12452-12459. PubMed ID: 30860346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cracking of Polycrystalline Graphene on Copper under Tension.
    Na SR; Wang X; Piner RD; Huang R; Willson CG; Liechti KM
    ACS Nano; 2016 Oct; 10(10):9616-9625. PubMed ID: 27652909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing.
    Dhakar L; Gudla S; Shan X; Wang Z; Tay FE; Heng CH; Lee C
    Sci Rep; 2016 Feb; 6():22253. PubMed ID: 26905285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile graphene transfer directly to target substrates with a reusable metal catalyst.
    Mafra DL; Ming T; Kong J
    Nanoscale; 2015 Sep; 7(36):14807-12. PubMed ID: 26289387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible electrostatic nanogenerator using graphene oxide film.
    Tian H; Ma S; Zhao HM; Wu C; Ge J; Xie D; Yang Y; Ren TL
    Nanoscale; 2013 Oct; 5(19):8951-7. PubMed ID: 23963301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination.
    Hempel M; Lu AY; Hui F; Kpulun T; Lanza M; Harris G; Palacios T; Kong J
    Nanoscale; 2018 Mar; 10(12):5522-5531. PubMed ID: 29513332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor.
    Polsen ES; McNerny DQ; Viswanath B; Pattinson SW; John Hart A
    Sci Rep; 2015 May; 5():10257. PubMed ID: 25997124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na
    Cui C; Wang X; Yi Z; Yang B; Wang X; Chen X; Liu J; Yang C
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3652-3659. PubMed ID: 29313665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high energy output nanogenerator based on reduced graphene oxide.
    Li W; Zhang Y; Liu L; Li D; Liao L; Pan C
    Nanoscale; 2015 Nov; 7(43):18147-51. PubMed ID: 26478125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Mobility Graphene on EVA/PET.
    Khan M; Indykiewicz K; Tam PL; Yurgens A
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.