These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26256059)

  • 21. Selective backbone labeling of proteins using 1,2-13C2-pyruvate as carbon source.
    Guo C; Geng C; Tugarinov V
    J Biomol NMR; 2009 Jul; 44(3):167-73. PubMed ID: 19468838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutagenesis-free approach to assignment of (19)F NMR resonances in biosynthetically labeled proteins.
    Kitevski-LeBlanc JL; Al-Abdul-Wahid MS; Prosser RS
    J Am Chem Soc; 2009 Feb; 131(6):2054-5. PubMed ID: 19173647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The DQ-HN[CACB] and DQ-HN(CO)[CACB] sequences with evolution of double quantum Calpha-Cbeta coherences.
    Koźmiński W; Zhukov I
    J Magn Reson; 2004 Nov; 171(1):186-91. PubMed ID: 15504699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner-Doudoroff pathway.
    Goldbourt A; Day LA; McDermott AE
    J Magn Reson; 2007 Dec; 189(2):157-65. PubMed ID: 17900951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations.
    Heise H; Seidel K; Etzkorn M; Becker S; Baldus M
    J Magn Reson; 2005 Mar; 173(1):64-74. PubMed ID: 15705514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein expression and isotopic enrichment based on induction of the Entner-Doudoroff pathway in Escherichia coli.
    Refaeli B; Goldbourt A
    Biochem Biophys Res Commun; 2012 Oct; 427(1):154-8. PubMed ID: 22995299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins.
    Sinha N; Grant CV; Park SH; Brown JM; Opella SJ
    J Magn Reson; 2007 May; 186(1):51-64. PubMed ID: 17293139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial production of site specific
    Ramaraju B; McFeeters H; Vogler B; McFeeters RL
    J Biomol NMR; 2017 Jan; 67(1):23-34. PubMed ID: 28028744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbonyl carbon label selective (CCLS) 1H-15N HSQC experiment for improved detection of backbone 13C-15N cross peaks in larger proteins.
    Tonelli M; Masterson LR; Hallenga K; Veglia G; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):177-85. PubMed ID: 17828465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthetic site-specific (13) C labeling of the light-harvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins.
    van Gammeren AJ; Hulsbergen FB; Hollander JG; de Groot HJ
    J Biomol NMR; 2004 Nov; 30(3):267-74. PubMed ID: 15754054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast protein backbone NMR resonance assignment using the BATCH strategy.
    Brutscher B; Lescop E
    Methods Mol Biol; 2012; 831():407-28. PubMed ID: 22167685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical shift based editing of CH3 groups in fractionally 13C-labelled proteins using GFT (3, 2)D CT-HCCH-COSY: stereospecific assignments of CH3 groups of Val and Leu residues.
    Barnwal RP; Atreya HS; Chary KV
    J Biomol NMR; 2008 Oct; 42(2):149-54. PubMed ID: 18810645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.
    Kumar D; Hosur RV
    Magn Reson Chem; 2011 Sep; 49(9):575-83. PubMed ID: 21818779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning.
    Zhou DH; Shah G; Cormos M; Mullen C; Sandoz D; Rienstra CM
    J Am Chem Soc; 2007 Sep; 129(38):11791-801. PubMed ID: 17725352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. (3,2)D GFT-NMR experiments for fast data collection from proteins.
    Xia Y; Zhu G; Veeraraghavan S; Gao X
    J Biomol NMR; 2004 Aug; 29(4):467-76. PubMed ID: 15243178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of C',Calpha correlations in proteins using a new time- and sensitivity-optimal experiment.
    Lee D; Vögeli B; Pervushin K
    J Biomol NMR; 2005 Apr; 31(4):273-8. PubMed ID: 15928994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auto-inducing media for uniform isotope labeling of proteins with (15)N, (13)C and (2)H.
    Guthertz N; Klopp J; Winterhalter A; Fernández C; Gossert AD
    J Biomol NMR; 2015 Jun; 62(2):169-77. PubMed ID: 25893498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for protein NMR in Escherichia coli.
    Xu G; Ye Y; Liu X; Cao S; Wu Q; Cheng K; Liu M; Pielak GJ; Li C
    Biochemistry; 2014 Apr; 53(12):1971-81. PubMed ID: 24597855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis.
    Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H
    Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.