BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26256179)

  • 1. Cationic nanofibrillar cellulose with high antibacterial properties.
    Chaker A; Boufi S
    Carbohydr Polym; 2015 Oct; 131():224-32. PubMed ID: 26256179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal ionic assembly between anionic native cellulose nanofibrils and cationic block copolymer micelles into biomimetic nanocomposites.
    Wang M; Olszewska A; Walther A; Malho JM; Schacher FH; Ruokolainen J; Ankerfors M; Laine J; Berglund LA; Osterberg M; Ikkala O
    Biomacromolecules; 2011 Jun; 12(6):2074-81. PubMed ID: 21517114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.
    Eronen P; Laine J; Ruokolainen J; Osterberg M
    J Colloid Interface Sci; 2012 May; 373(1):84-93. PubMed ID: 21993549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.
    Saini S; Yücel Falco Ç; Belgacem MN; Bras J
    Carbohydr Polym; 2016 Jan; 135():239-47. PubMed ID: 26453874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions.
    Wu T; Farnood R; O'Kelly K; Chen B
    J Mech Behav Biomed Mater; 2014 Apr; 32():279-286. PubMed ID: 24508714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial cellulose fiber via RAFT surface graft polymerization.
    Roy D; Knapp JS; Guthrie JT; Perrier S
    Biomacromolecules; 2008 Jan; 9(1):91-9. PubMed ID: 18067264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.
    Zhao J; Wei Z; Feng X; Miao M; Sun L; Cao S; Shi L; Fang J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14945-51. PubMed ID: 25116651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression.
    Dimic-Misic K; Hummel M; Paltakari J; Sixta H; Maloney T; Gane P
    J Colloid Interface Sci; 2015 May; 446():31-43. PubMed ID: 25656557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of drug interactions with nanofibrillar cellulose.
    Kolakovic R; Peltonen L; Laukkanen A; Hellman M; Laaksonen P; Linder MB; Hirvonen J; Laaksonen T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1238-44. PubMed ID: 23774185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.
    Torres-Rendon JG; Schacher FH; Ifuku S; Walther A
    Biomacromolecules; 2014 Jul; 15(7):2709-17. PubMed ID: 24947934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan colloidal suspension composed of mechanically disassembled nanofibers.
    Liu D; Chang PR; Chen M; Wu Q
    J Colloid Interface Sci; 2011 Feb; 354(2):637-43. PubMed ID: 21146175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Polyelectrolyte Complex Spinning of Cellulose Nanofibrils for Advanced Bicomponent Fibers.
    Toivonen MS; Kurki-Suonio S; Wagermaier W; Hynninen V; Hietala S; Ikkala O
    Biomacromolecules; 2017 Apr; 18(4):1293-1301. PubMed ID: 28262019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.