These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 26256206)
1. Nano-engineering chitosan particles to sustain the release of promethazine from orodispersables. Elwerfalli AM; Al-Kinani A; Alany RG; ElShaer A Carbohydr Polym; 2015 Oct; 131():447-61. PubMed ID: 26256206 [TBL] [Abstract][Full Text] [Related]
2. Study of 5-Fluorouracil Loaded Chitosan Nanoparticles for Treatment of Skin Cancer. Patel G; Yadav BKN Recent Pat Nanotechnol; 2020; 14(3):210-224. PubMed ID: 31267881 [TBL] [Abstract][Full Text] [Related]
3. Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Songsurang K; Praphairaksit N; Siraleartmukul K; Muangsin N Arch Pharm Res; 2011 Apr; 34(4):583-92. PubMed ID: 21544723 [TBL] [Abstract][Full Text] [Related]
4. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release. Zhang L; Wang J; Ni C; Zhang Y; Shi G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():724-9. PubMed ID: 26478364 [TBL] [Abstract][Full Text] [Related]
5. Fast and pH-dependent release of domperidone from orally disintegrating tablets. Assaf SM; Qandil AM; Al-Ani EA Pharm Dev Technol; 2013; 18(4):897-905. PubMed ID: 22304659 [TBL] [Abstract][Full Text] [Related]
6. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Bagre AP; Jain K; Jain NK Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363 [TBL] [Abstract][Full Text] [Related]
7. Optimization of physicochemical parameters influencing the fabrication of protein-loaded chitosan nanoparticles. Vandana M; Sahoo SK Nanomedicine (Lond); 2009 Oct; 4(7):773-85. PubMed ID: 19839813 [TBL] [Abstract][Full Text] [Related]
8. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Honary S; Ebrahimi P; Hadianamrei R Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898 [TBL] [Abstract][Full Text] [Related]
9. Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. Savin CL; Popa M; Delaite C; Costuleanu M; Costin D; Peptu CA Mater Sci Eng C Mater Biol Appl; 2019 May; 98():843-860. PubMed ID: 30813091 [TBL] [Abstract][Full Text] [Related]
10. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Hashad RA; Ishak RA; Fahmy S; Mansour S; Geneidi AS Int J Biol Macromol; 2016 May; 86():50-8. PubMed ID: 26783636 [TBL] [Abstract][Full Text] [Related]
11. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Iqbal O; Shah S; Abbas G; Rasul A; Hanif M; Ashfaq M; Afzal Z Int J Biol Macromol; 2021 Jul; 182():2087-2096. PubMed ID: 34087298 [TBL] [Abstract][Full Text] [Related]
12. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging. Ranjan AP; Zeglam K; Mukerjee A; Thamake S; Vishwanatha JK Nanotechnology; 2011 Jul; 22(29):295104. PubMed ID: 21693801 [TBL] [Abstract][Full Text] [Related]
13. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Singh KH; Shinde UA Pharmazie; 2011 Aug; 66(8):594-9. PubMed ID: 21901982 [TBL] [Abstract][Full Text] [Related]
14. Development and Characterization of Chitosan Cross-Linked With Tripolyphosphate as a Sustained Release Agent in Tablets, Part I: Design of Experiments and Optimization. Pinto CA; Saripella KK; Loka NC; Neau SH J Pharm Sci; 2018 Apr; 107(4):1063-1075. PubMed ID: 29183743 [TBL] [Abstract][Full Text] [Related]
15. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery. Pawar H; Douroumis D; Boateng JS Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474 [TBL] [Abstract][Full Text] [Related]
16. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Esmaeili A; Asgari A Int J Biol Macromol; 2015 Nov; 81():283-90. PubMed ID: 26257380 [TBL] [Abstract][Full Text] [Related]
17. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Hosseini SF; Zandi M; Rezaei M; Farahmandghavi F Carbohydr Polym; 2013 Jun; 95(1):50-6. PubMed ID: 23618238 [TBL] [Abstract][Full Text] [Related]
18. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Gan Q; Wang T; Cochrane C; McCarron P Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239 [TBL] [Abstract][Full Text] [Related]
19. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Chronopoulou L; Massimi M; Giardi MF; Cametti C; Devirgiliis LC; Dentini M; Palocci C Colloids Surf B Biointerfaces; 2013 Mar; 103():310-7. PubMed ID: 23261553 [TBL] [Abstract][Full Text] [Related]
20. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]