BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26256310)

  • 1. Orthogonal Ternary Functionalization of a Mesoporous Metal-Organic Framework via Sequential Postsynthetic Ligand Exchange.
    Liu C; Luo TY; Feura ES; Zhang C; Rosi NL
    J Am Chem Soc; 2015 Aug; 137(33):10508-11. PubMed ID: 26256310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SuFEx in Metal-Organic Frameworks: Versatile Postsynthetic Modification Tool.
    Park S; Song H; Ko N; Kim C; Kim K; Lee E
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33785-33789. PubMed ID: 30230813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities.
    Park H; Kim S; Jung B; Park MH; Kim Y; Kim M
    Inorg Chem; 2018 Feb; 57(3):1040-1047. PubMed ID: 29303561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination.
    Marshall RJ; Griffin SL; Wilson C; Forgan RS
    J Am Chem Soc; 2015 Aug; 137(30):9527-30. PubMed ID: 26175317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynthetic ligand and cation exchange in robust metal-organic frameworks.
    Kim M; Cahill JF; Fei H; Prather KA; Cohen SM
    J Am Chem Soc; 2012 Oct; 134(43):18082-8. PubMed ID: 23039827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switch-On Fluorescence of a Perylene-Dye-Functionalized Metal-Organic Framework through Postsynthetic Modification.
    Dietl C; Hintz H; Rühle B; Schmedt Auf der Günne J; Langhals H; Wuttke S
    Chemistry; 2015 Jul; 21(30):10714-20. PubMed ID: 26037475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange.
    Liu C; Zeng C; Luo TY; Merg AD; Jin R; Rosi NL
    J Am Chem Soc; 2016 Sep; 138(37):12045-8. PubMed ID: 27593173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynthetic Selective Ligand Cleavage by Solid-Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal-Organic Frameworks.
    Guillerm V; Xu H; Albalad J; Imaz I; Maspoch D
    J Am Chem Soc; 2018 Nov; 140(44):15022-15030. PubMed ID: 30351020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization.
    Fei H; Cohen SM
    J Am Chem Soc; 2015 Feb; 137(6):2191-4. PubMed ID: 25650584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Symmetry Modulation for Designing a Mesoporous Metal-Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization.
    Du M; Wang X; Chen M; Li CP; Tian JY; Wang ZW; Liu CS
    Chemistry; 2015 Jun; 21(27):9713-9. PubMed ID: 26013160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry.
    Zhou Y; Yan B
    Nanoscale; 2015 Mar; 7(9):4063-9. PubMed ID: 25660360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Functionalization of Metal-Organic Frameworks Using In Situ NMR Spectroscopy.
    Yuan N; Church TL; Brandt EG; Hedin N; Zou X; Bernin D
    Sci Rep; 2018 Dec; 8(1):17530. PubMed ID: 30510207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary gradient metal-organic frameworks.
    Liu C; Rosi NL
    Faraday Discuss; 2017 Sep; 201():163-174. PubMed ID: 28621353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional tolerance in an isoreticular series of highly porous metal-organic frameworks.
    Kim M; Boissonnault JA; Allen CA; Dau PV; Cohen SM
    Dalton Trans; 2012 May; 41(20):6277-82. PubMed ID: 22491705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly.
    Park J; Wang ZU; Sun LB; Chen YP; Zhou HC
    J Am Chem Soc; 2012 Dec; 134(49):20110-6. PubMed ID: 23157426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.