These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 26256322)
1. Enzymatic synthesis of 2-deoxyglucose-containing maltooligosaccharides for tracing the location of glucose absorption from starch digestion. Lee BH; Koh DW; Territo PR; Park CS; Hamaker BR; Yoo SH Carbohydr Polym; 2015 Nov; 132():41-9. PubMed ID: 26256322 [TBL] [Abstract][Full Text] [Related]
2. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
3. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors. Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745 [TBL] [Abstract][Full Text] [Related]
4. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Lee BH; Hamaker BR Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919 [TBL] [Abstract][Full Text] [Related]
5. Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. Quezada-Calvillo R; Robayo-Torres CC; Ao Z; Hamaker BR; Quaroni A; Brayer GD; Sterchi EE; Baker SS; Nichols BL J Pediatr Gastroenterol Nutr; 2007 Jul; 45(1):32-43. PubMed ID: 17592362 [TBL] [Abstract][Full Text] [Related]
6. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
7. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study. Chukwuma CI; Islam MS Food Funct; 2015 Mar; 6(3):955-62. PubMed ID: 25656339 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of 2-deoxy-glucooligosaccharides through condensation of 2-deoxy-D-glucose by glucoamylase and alpha-glucosidase. Nakano H; Hamayasu K; Fujita K; Hara K; Ohi M; Yoshizumi H; Kitahata S Biosci Biotechnol Biochem; 1995 Sep; 59(9):1732-6. PubMed ID: 8520115 [TBL] [Abstract][Full Text] [Related]
9. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Li K; Yao F; Du J; Deng X; Li C J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426 [TBL] [Abstract][Full Text] [Related]
10. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase. Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326 [TBL] [Abstract][Full Text] [Related]
11. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Hansawasdi C; Kawabata J; Kasai T Biosci Biotechnol Biochem; 2001 Sep; 65(9):2087-9. PubMed ID: 11676026 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
13. A mechanistic model of small intestinal starch digestion and glucose uptake in the cow. Mills JAN; France J; Ellis JL; Crompton LA; Bannink A; Hanigan MD; Dijkstra J J Dairy Sci; 2017 Jun; 100(6):4650-4670. PubMed ID: 28365112 [TBL] [Abstract][Full Text] [Related]
14. The importance of starch and sucrose digestion in nutritive biology of synanthropic acaridid mites: alpha-amylases and alpha-glucosidases are suitable targets for inhibitor-based strategies of mite control. Erban T; Erbanova M; Nesvorna M; Hubert J Arch Insect Biochem Physiol; 2009 Jul; 71(3):139-58. PubMed ID: 19480003 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an α-glucosidase, HdAgl, from the digestive fluid of Haliotis discus hannai. Satoh T; Inoue A; Ojima T Comp Biochem Physiol B Biochem Mol Biol; 2013 Sep; 166(1):15-22. PubMed ID: 23774639 [TBL] [Abstract][Full Text] [Related]
16. Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit. Lin AH; Nichols BL; Quezada-Calvillo R; Avery SE; Sim L; Rose DR; Naim HY; Hamaker BR PLoS One; 2012; 7(5):e35473. PubMed ID: 22563462 [TBL] [Abstract][Full Text] [Related]
17. Digestion in adult females of the leaf-footed bug Leptoglossus zonatus (Hemiptera: Coreidae) with emphasis on the glycoside hydrolases α-amylase, α-galactosidase, and α-glucosidase. Rocha AA; Pinto CJ; Samuels RI; Alexandre D; Silva CP Arch Insect Biochem Physiol; 2014 Mar; 85(3):152-63. PubMed ID: 24481987 [TBL] [Abstract][Full Text] [Related]
18. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818 [TBL] [Abstract][Full Text] [Related]
19. Glucose absorption from starch hydrolysates in the human jejunum. Jones BJ; Brown BE; Loran JS; Edgerton D; Kennedy JF; Stead JA; Silk DB Gut; 1983 Dec; 24(12):1152-60. PubMed ID: 6605901 [TBL] [Abstract][Full Text] [Related]
20. A novel alpha-glucosidase from the moss Scopelophila cataractae. Yamasaki Y; Nakashima S; Konno H Acta Biochim Pol; 2007; 54(2):401-6. PubMed ID: 17502927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]