These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26256480)

  • 41. Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors.
    Yang Y; Zhou Y; Wu JM; Wang ZL
    ACS Nano; 2012 Sep; 6(9):8456-61. PubMed ID: 22900676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of hypertonic arginine on cerebral blood flow and intracranial pressure after traumatic brain injury combined with hemorrhagic hypotension.
    Prough DS; Kramer GC; Uchida T; Stephenson RT; Hellmich HL; Dewitt DS
    Shock; 2006 Sep; 26(3):290-5. PubMed ID: 16912655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Development of a Thin-Filmed Noninvasive Tissue Perfusion Sensor to Quantify Capillary Pressure Occlusion of Explanted Organs.
    O'Brien TJ; Roghanizad AR; Jones PA; Aardema CH; Robertson JL; Diller TE
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1631-1637. PubMed ID: 28113229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrated temperature sensor based on an enhanced pyroelectric photonic crystal.
    Lu H; Sadani B; Ulliac G; Guyot C; Courjal N; Collet M; Baida FI; Bernal MP
    Opt Express; 2013 Jul; 21(14):16311-8. PubMed ID: 23938483
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inducing and imaging thermal strain using a single ultrasound linear array.
    Huang SW; Kim K; Witte RS; Olafsson R; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1718-20. PubMed ID: 17941376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s.
    Minakov AA; Schick C
    Rev Sci Instrum; 2007 Jul; 78(7):073902. PubMed ID: 17672768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.
    Tzur M; Desiatov B; Goykhman I; Grajower M; Levy U
    Opt Express; 2013 Dec; 21(24):29195-204. PubMed ID: 24514471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and characterization of a close-proximity thermoacoustic sensor.
    Xing J; Choi M; Ang W; Yu X; Chen J
    Ultrasound Med Biol; 2013 Sep; 39(9):1613-22. PubMed ID: 23820248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator.
    Fuchiwaki Y; Nagai H
    Sensors (Basel); 2014 Oct; 14(11):20235-44. PubMed ID: 25350508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo.
    Wang RK
    Phys Med Biol; 2007 Dec; 52(23):N531-7. PubMed ID: 18029974
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cerebral blood flow quantification in swine using pseudo-continuous arterial spin labeling.
    Johnston ME; Zheng Z; Maldjian JA; Whitlow CT; Morykwas MJ; Jung Y
    J Magn Reson Imaging; 2013 Nov; 38(5):1111-8. PubMed ID: 24105693
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor.
    Li X; Sun Q; Liu D; Liang R; Zhang J; Wo J; Shum PP; Liu D
    Opt Express; 2012 May; 20(11):12076-84. PubMed ID: 22714194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with H(2)(15)O PET.
    Kellner E; Mix M; Reisert M; Förster K; Nguyen-Thanh T; Splitthoff DN; Gall P; Kiselev VG; Mader I
    Magn Reson Med; 2014 Dec; 72(6):1723-34. PubMed ID: 24375612
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Precise thermodynamic control of high pressure jet expansions.
    Christen W; Krause T; Rademann K
    Rev Sci Instrum; 2007 Jul; 78(7):073106. PubMed ID: 17672754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods.
    Obrenovitch TP; Chen S; Farkas E
    Neuroimage; 2009 Mar; 45(1):68-74. PubMed ID: 19100842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly sensitive curvature sensor based on a multicladding fiber sandwiched dual no-core fibers structure.
    Qi Y; Ma L; Kang Z; Bai Y; Yin B; Jian S
    Appl Opt; 2014 Oct; 53(28):6382-8. PubMed ID: 25322222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seebeck nanoantennas for the detection and characterization of infrared radiation.
    Briones E; Cuadrado A; Briones J; Díaz de León R; Martínez-Antón JC; McMurtry S; Hehn M; Montaigne F; Alda J; González FJ
    Opt Express; 2014 Oct; 22 Suppl 6():A1538-46. PubMed ID: 25607310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and testing of a wearable Integrated Thermometer sensor for skin contact thermography.
    Giansanti D; Maccioni G
    Med Eng Phys; 2007 Jun; 29(5):556-65. PubMed ID: 16934515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validation of continuous thermal measurement of cerebral blood flow by arterial pressure change.
    Wei D; Shea M; Saidel GM; Jones SC
    J Cereb Blood Flow Metab; 1993 Jul; 13(4):693-701. PubMed ID: 8314922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.