These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26256481)

  • 21. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.
    Lee JW; Choi YJ; Yong WJ; Pati F; Shim JH; Kang KS; Kang IH; Park J; Cho DW
    Biofabrication; 2016 Jan; 8(1):015007. PubMed ID: 26756962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro formation of vascular-like networks using hydrogels.
    Takei T; Sakai S; Yoshida M
    J Biosci Bioeng; 2016 Nov; 122(5):519-527. PubMed ID: 27117917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering.
    Badhe RV; Bijukumar D; Chejara DR; Mabrouk M; Choonara YE; Kumar P; du Toit LC; Kondiah PPD; Pillay V
    Carbohydr Polym; 2017 Feb; 157():1215-1225. PubMed ID: 27987825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Customizable engineered blood vessels using 3D printed inserts.
    Pinnock CB; Meier EM; Joshi NN; Wu B; Lam MT
    Methods; 2016 Apr; 99():20-7. PubMed ID: 26732049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of perfusable double-layered vascular structures using contraction of spheroid-embedded hydrogel and electrochemical cell detachment.
    Shimazu Y; Zhang B; Yue Z; Wallace GG; Fukuda J
    J Biosci Bioeng; 2019 Jan; 127(1):114-120. PubMed ID: 30072116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.
    Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile fabrication of Bi-layered perfusable hydrogel tubes as biomimetic 3D arterial construct.
    Manigandan A; Dhandapani R; Bagewadi S; Sethu P; Sethuraman S; Subramanian A
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36099909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical biofabrication of biomimetic collagen-elastin vascular grafts with controllable properties via lyophilisation.
    Ryan AJ; Ryan EJ; Cameron AR; O'Brien FJ
    Acta Biomater; 2020 Aug; 112():52-61. PubMed ID: 32525053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers.
    Takei T; Sakai S; Yokonuma T; Ijima H; Kawakami K
    Biotechnol Prog; 2007; 23(1):182-6. PubMed ID: 17269686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.