These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 26256633)
1. Concepts and challenges in cancer risk prediction for the space radiation environment. Barcellos-Hoff MH; Blakely EA; Burma S; Fornace AJ; Gerson S; Hlatky L; Kirsch DG; Luderer U; Shay J; Wang Y; Weil MM Life Sci Space Res (Amst); 2015 Jul; 6():92-103. PubMed ID: 26256633 [TBL] [Abstract][Full Text] [Related]
2. Predictions of space radiation fatality risk for exploration missions. Cucinotta FA; To K; Cacao E Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504 [TBL] [Abstract][Full Text] [Related]
3. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123. ; Dietze G; Bartlett DT; Cool DA; Cucinotta FA; Jia X; McAulay IR; Pelliccioni M; Petrov V; Reitz G; Sato T Ann ICRP; 2013 Aug; 42(4):1-339. PubMed ID: 23958389 [TBL] [Abstract][Full Text] [Related]
4. Implications of the space radiation environment for human exploration in deep space. Townsend LW Radiat Prot Dosimetry; 2005; 115(1-4):44-50. PubMed ID: 16381680 [TBL] [Abstract][Full Text] [Related]
5. NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. Simonsen LC; Slaba TC; Guida P; Rusek A PLoS Biol; 2020 May; 18(5):e3000669. PubMed ID: 32428004 [TBL] [Abstract][Full Text] [Related]
6. Getting ready for the manned mission to Mars: the astronauts' risk from space radiation. Hellweg CE; Baumstark-Khan C Naturwissenschaften; 2007 Jul; 94(7):517-26. PubMed ID: 17235598 [TBL] [Abstract][Full Text] [Related]
7. Medical mitigation strategies for acute radiation exposure during spaceflight. Epelman S; Hamilton DR Aviat Space Environ Med; 2006 Feb; 77(2):130-9. PubMed ID: 16491581 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Rodman C; Almeida-Porada G; George SK; Moon J; Soker S; Pardee T; Beaty M; Guida P; Sajuthi SP; Langefeld CD; Walker SJ; Wilson PF; Porada CD Leukemia; 2017 Jun; 31(6):1398-1407. PubMed ID: 27881872 [TBL] [Abstract][Full Text] [Related]
9. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers. Williams JR; Zhang Y; Zhou H; Osman M; Cha D; Kavet R; Cuccinotta F; Dicello JF; Dillehay LE Mutat Res; 1999 Dec; 430(2):255-69. PubMed ID: 10631340 [TBL] [Abstract][Full Text] [Related]
10. NON-TARGETED EFFECTS LEAD TO A PARIDIGM SHIFT IN RISK ASSESSMENT FOR A MISSION TO THE EARTH'S MOON OR MARTIAN MOON PHOBOS. Cucinotta FA; Cacao E; Kim MY; Saganti PB Radiat Prot Dosimetry; 2019 May; 183(1-2):213-218. PubMed ID: 30576527 [TBL] [Abstract][Full Text] [Related]
11. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Delp MD; Charvat JM; Limoli CL; Globus RK; Ghosh P Sci Rep; 2016 Jul; 6():29901. PubMed ID: 27467019 [TBL] [Abstract][Full Text] [Related]
12. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Chylack LT; Peterson LE; Feiveson AH; Wear ML; Manuel FK; Tung WH; Hardy DS; Marak LJ; Cucinotta FA Radiat Res; 2009 Jul; 172(1):10-20. PubMed ID: 19580503 [TBL] [Abstract][Full Text] [Related]
13. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions. Cucinotta FA Life Sci Space Res (Amst); 2024 Feb; 40():166-175. PubMed ID: 38245342 [TBL] [Abstract][Full Text] [Related]
14. A methodology for investigating the impact of medical countermeasures on the risk of exposure induced death. Werneth CM; Slaba TC; Blattnig SR; Huff JL; Norman RB Life Sci Space Res (Amst); 2020 May; 25():72-102. PubMed ID: 32414495 [TBL] [Abstract][Full Text] [Related]
15. Heavy ion carcinogenesis and human space exploration. Durante M; Cucinotta FA Nat Rev Cancer; 2008 Jun; 8(6):465-72. PubMed ID: 18451812 [TBL] [Abstract][Full Text] [Related]
16. The impact of the new biology on radiation risks in space. Dicello JF Health Phys; 2003 Jul; 85(1):94-102. PubMed ID: 12861962 [TBL] [Abstract][Full Text] [Related]
17. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Sridharan DM; Asaithamby A; Bailey SM; Costes SV; Doetsch PW; Dynan WS; Kronenberg A; Rithidech KN; Saha J; Snijders AM; Werner E; Wiese C; Cucinotta FA; Pluth JM Radiat Res; 2015 Jan; 183(1):1-26. PubMed ID: 25564719 [TBL] [Abstract][Full Text] [Related]
18. Materials trade study for lunar/gateway missions. Tripathi RK; Wilson JW; Cucinotta FA; Anderson BM; Simonsen LC Adv Space Res; 2003; 31(11):2383-8. PubMed ID: 14696588 [TBL] [Abstract][Full Text] [Related]
19. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions. Smirnova OA; Cucinotta FA Life Sci Space Res (Amst); 2018 Feb; 16():76-83. PubMed ID: 29475522 [TBL] [Abstract][Full Text] [Related]
20. A proposed change to astronaut exposures limits is a giant leap backwards for radiation protection. Cucinotta FA; Schimmerling W; Blakely EA; Hei TK Life Sci Space Res (Amst); 2021 Nov; 31():59-70. PubMed ID: 34689951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]