These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26256809)

  • 21. Metabolite selection for machine learning in childhood brain tumour classification.
    Zhao D; Grist JT; Rose HEL; Davies NP; Wilson M; MacPherson L; Abernethy LJ; Avula S; Pizer B; Gutierrez DR; Jaspan T; Morgan PS; Mitra D; Bailey S; Sawlani V; Arvanitis TN; Sun Y; Peet AC
    NMR Biomed; 2022 Jun; 35(6):e4673. PubMed ID: 35088473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grading of gliomas using transfer learning on MRI images.
    Fasihi Shirehjini O; Babapour Mofrad F; Shahmohammadi M; Karami F
    MAGMA; 2023 Feb; 36(1):43-53. PubMed ID: 36326937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmentation, feature extraction, and multiclass brain tumor classification.
    Sachdeva J; Kumar V; Gupta I; Khandelwal N; Ahuja CK
    J Digit Imaging; 2013 Dec; 26(6):1141-50. PubMed ID: 23645344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI.
    Larroza A; Moratal D; Paredes-Sánchez A; Soria-Olivas E; Chust ML; Arribas LA; Arana E
    J Magn Reson Imaging; 2015 Nov; 42(5):1362-8. PubMed ID: 25865833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual neural network ensemble approach for multiclass brain tumor classification.
    Sachdeva J; Kumar V; Gupta I; Khandelwal N; Ahuja CK
    Int J Numer Method Biomed Eng; 2012 Nov; 28(11):1107-20. PubMed ID: 23109381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glioma grading using a machine-learning framework based on optimized features obtained from T
    Sengupta A; Ramaniharan AK; Gupta RK; Agarwal S; Singh A
    J Magn Reson Imaging; 2019 Oct; 50(4):1295-1306. PubMed ID: 30895704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive study of brain tumour discrimination using phase combinations, feature rankings, and hybridised classifiers.
    Koyuncu H; Barstuğan M; Öziç MÜ
    Med Biol Eng Comput; 2020 Dec; 58(12):2971-2987. PubMed ID: 33006703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain tumor classification for MR images using transfer learning and fine-tuning.
    Swati ZNK; Zhao Q; Kabir M; Ali F; Ali Z; Ahmed S; Lu J
    Comput Med Imaging Graph; 2019 Jul; 75():34-46. PubMed ID: 31150950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of childhood medulloblastoma into WHO-defined multiple subtypes based on textural analysis.
    Das D; Mahanta LB; Ahmed S; Baishya BK
    J Microsc; 2020 Jul; 279(1):26-38. PubMed ID: 32271463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation between pilocytic astrocytoma and glioblastoma: a decision tree model using contrast-enhanced magnetic resonance imaging-derived quantitative radiomic features.
    Dong F; Li Q; Xu D; Xiu W; Zeng Q; Zhu X; Xu F; Jiang B; Zhang M
    Eur Radiol; 2019 Aug; 29(8):3968-3975. PubMed ID: 30421019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and Validation of a Deep Learning-Based Automatic Brain Segmentation and Classification Algorithm for Alzheimer Disease Using 3D T1-Weighted Volumetric Images.
    Suh CH; Shim WH; Kim SJ; Roh JH; Lee JH; Kim MJ; Park S; Jung W; Sung J; Jahng GH;
    AJNR Am J Neuroradiol; 2020 Dec; 41(12):2227-2234. PubMed ID: 33154073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI.
    Kocak B; Durmaz ES; Kadioglu P; Polat Korkmaz O; Comunoglu N; Tanriover N; Kocer N; Islak C; Kizilkilic O
    Eur Radiol; 2019 Jun; 29(6):2731-2739. PubMed ID: 30506213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep semi-supervised learning for brain tumor classification.
    Ge C; Gu IY; Jakola AS; Yang J
    BMC Med Imaging; 2020 Jul; 20(1):87. PubMed ID: 32727476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods.
    Georgiadis P; Cavouras D; Kalatzis I; Glotsos D; Athanasiadis E; Kostopoulos S; Sifaki K; Malamas M; Nikiforidis G; Solomou E
    Magn Reson Imaging; 2009 Jan; 27(1):120-30. PubMed ID: 18602785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of clinically occult primary tumours in patients with cervical metastases of unknown primary tumours: comparison of three-dimensional THRIVE MRI, two-dimensional spin-echo MRI, and contrast-enhanced CT.
    Yoo MG; Kim J; Bae S; Ahn SS; Ahn SJ; Koh YW
    Clin Radiol; 2018 Apr; 73(4):410.e9-410.e15. PubMed ID: 29195660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of paediatric brain tumours by diffusion weighted imaging and machine learning.
    Novak J; Zarinabad N; Rose H; Arvanitis T; MacPherson L; Pinkey B; Oates A; Hales P; Grundy R; Auer D; Gutierrez DR; Jaspan T; Avula S; Abernethy L; Kaur R; Hargrave D; Mitra D; Bailey S; Davies N; Clark C; Peet A
    Sci Rep; 2021 Feb; 11(1):2987. PubMed ID: 33542327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol.
    Milenković J; Dalmış MU; Žgajnar J; Platel B
    Med Phys; 2017 Sep; 44(9):4652-4664. PubMed ID: 28622412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: a feasibility study.
    Filograna L; Lenkowicz J; Cellini F; Dinapoli N; Manfrida S; Magarelli N; Leone A; Colosimo C; Valentini V
    Radiol Med; 2019 Jan; 124(1):50-57. PubMed ID: 30191445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.