These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 26256809)
41. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
42. Association between breast cancer's prognostic factors and 3D textural features of non-contrast-enhanced Lepola A; Arponen O; Okuma H; Holli-Helenius K; Junkkari H; Könönen M; Auvinen P; Sudah M; Sutela A; Vanninen R Br J Radiol; 2022 Feb; 95(1130):20210702. PubMed ID: 34826254 [TBL] [Abstract][Full Text] [Related]
43. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. Xu X; Zhang X; Tian Q; Zhang G; Liu Y; Cui G; Meng J; Wu Y; Liu T; Yang Z; Lu H Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):645-656. PubMed ID: 28110476 [TBL] [Abstract][Full Text] [Related]
44. Development of a Machine Learning Classifier Based on Radiomic Features Extracted From Post-Contrast 3D T1-Weighted MR Images to Distinguish Glioblastoma From Solitary Brain Metastasis. de Causans A; Carré A; Roux A; Tauziède-Espariat A; Ammari S; Dezamis E; Dhermain F; Reuzé S; Deutsch E; Oppenheim C; Varlet P; Pallud J; Edjlali M; Robert C Front Oncol; 2021; 11():638262. PubMed ID: 34327133 [TBL] [Abstract][Full Text] [Related]
45. Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma. Fan M; Liu Z; Xie S; Xu M; Wang S; Gao X; Li L Phys Med Biol; 2019 Oct; 64(21):215001. PubMed ID: 31470420 [TBL] [Abstract][Full Text] [Related]
46. Radiomics for Distinguishing Myocardial Infarction from Myocarditis at Late Gadolinium Enhancement at MRI: Comparison with Subjective Visual Analysis. Di Noto T; von Spiczak J; Mannil M; Gantert E; Soda P; Manka R; Alkadhi H Radiol Cardiothorac Imaging; 2019 Dec; 1(5):e180026. PubMed ID: 33778525 [TBL] [Abstract][Full Text] [Related]
47. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961 [TBL] [Abstract][Full Text] [Related]
48. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559 [TBL] [Abstract][Full Text] [Related]
49. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [TBL] [Abstract][Full Text] [Related]
50. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies. Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569 [TBL] [Abstract][Full Text] [Related]
51. Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study. Zhang M; Wong SW; Wright JN; Toescu S; Mohammadzadeh M; Han M; Lummus S; Wagner MW; Yecies D; Lai H; Eghbal A; Radmanesh A; Nemelka J; Harward S; Malinzak M; Laughlin S; Perreault S; Braun KRM; Vossough A; Poussaint T; Goetti R; Ertl-Wagner B; Ho CY; Oztekin O; Ramaswamy V; Mankad K; Vitanza NA; Cheshier SH; Said M; Aquilina K; Thompson E; Jaju A; Grant GA; Lober RM; Yeom KW Neurosurgery; 2021 Oct; 89(5):892-900. PubMed ID: 34392363 [TBL] [Abstract][Full Text] [Related]
52. Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Georgiadis P; Cavouras D; Kalatzis I; Daskalakis A; Kagadis GC; Sifaki K; Malamas M; Nikiforidis G; Solomou E Comput Methods Programs Biomed; 2008 Jan; 89(1):24-32. PubMed ID: 18053610 [TBL] [Abstract][Full Text] [Related]
53. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related]
54. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Zacharaki EI; Wang S; Chawla S; Soo Yoo D; Wolf R; Melhem ER; Davatzikos C Magn Reson Med; 2009 Dec; 62(6):1609-18. PubMed ID: 19859947 [TBL] [Abstract][Full Text] [Related]
55. 2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution. Béresová M; Larroza A; Arana E; Varga J; Balkay L; Moratal D MAGMA; 2018 Apr; 31(2):285-294. PubMed ID: 28939952 [TBL] [Abstract][Full Text] [Related]
56. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594 [TBL] [Abstract][Full Text] [Related]
57. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
58. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
59. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images. Gil B; Hwang EJ; Lee S; Jang J; Choi HS; Jung SL; Ahn KJ; Kim BS PLoS One; 2016; 11(10):e0163081. PubMed ID: 27695096 [TBL] [Abstract][Full Text] [Related]
60. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]