BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26256870)

  • 1. [Genetic and epigenetic abnormalities in myeloproliferative neoplasms].
    Kameda T; Shide K; Shimoda K
    Rinsho Ketsueki; 2015 Jun; 56(6):614-22. PubMed ID: 26256870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms.
    Kameda T; Shide K; Yamaji T; Kamiunten A; Sekine M; Hidaka T; Kubuki Y; Sashida G; Aoyama K; Yoshimitsu M; Abe H; Miike T; Iwakiri H; Tahara Y; Yamamoto S; Hasuike S; Nagata K; Iwama A; Kitanaka A; Shimoda K
    Genom Data; 2015 Jun; 4():102-8. PubMed ID: 26484191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent advances in molecular pathogenesis of myeloproliferative neoplasms].
    Ikeda K
    Rinsho Ketsueki; 2016 Feb; 57(2):156-64. PubMed ID: 26935633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator.
    Kameda T; Shide K; Yamaji T; Kamiunten A; Sekine M; Taniguchi Y; Hidaka T; Kubuki Y; Shimoda H; Marutsuka K; Sashida G; Aoyama K; Yoshimitsu M; Harada T; Abe H; Miike T; Iwakiri H; Tahara Y; Sueta M; Yamamoto S; Hasuike S; Nagata K; Iwama A; Kitanaka A; Shimoda K
    Blood; 2015 Jan; 125(2):304-15. PubMed ID: 25395421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Myeloproliferative neoplasms: updates on molecular pathophysiology, diagnosis and treatment strategies].
    Takenaka K
    Rinsho Ketsueki; 2016; 57(10):1944-1955. PubMed ID: 27725592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolving genomic landscape of myeloproliferative neoplasms.
    Nangalia J; Green TR
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):287-96. PubMed ID: 25696868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of normal and neoplastic hematopoiesis is dependent on microenvironmental cells.
    Kaushansky K; Zhan H
    Adv Biol Regul; 2018 Aug; 69():11-15. PubMed ID: 29970351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms.
    Prick J; de Haan G; Green AR; Kent DG
    Exp Hematol; 2014 Oct; 42(10):841-51. PubMed ID: 25201757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Molecular Profiling of Myeloproliferative Neoplasms Using Targeted Exon Resequencing of 86 Genes Involved in JAK-STAT Signaling and Epigenetic Regulation.
    Magor GW; Tallack MR; Klose NM; Taylor D; Korbie D; Mollee P; Trau M; Perkins AC
    J Mol Diagn; 2016 Sep; 18(5):707-718. PubMed ID: 27449473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focus on the epigenome in the myeloproliferative neoplasms.
    Kim E; Abdel-Wahab O
    Hematology Am Soc Hematol Educ Program; 2013; 2013():538-44. PubMed ID: 24319229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetics in Myeloproliferative Neoplasms.
    McPherson S; McMullin MF; Mills K
    J Cell Mol Med; 2017 Sep; 21(9):1660-1667. PubMed ID: 28677265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms.
    Chen E; Schneider RK; Breyfogle LJ; Rosen EA; Poveromo L; Elf S; Ko A; Brumme K; Levine R; Ebert BL; Mullally A
    Blood; 2015 Jan; 125(2):327-35. PubMed ID: 25281607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Myeloproliferative neoplasms: pathophysiology and therapeutic strategy].
    Kubuki Y; Hidaka T; Shimoda K
    Rinsho Ketsueki; 2015 Oct; 56(10):1996-2004. PubMed ID: 26458438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Clonal hematopoiesis and its evolution of myeloproliferative neoplasms].
    Zhang L; Dong H
    Zhonghua Yi Xue Za Zhi; 2023 Dec; 103(45):3608-3614. PubMed ID: 38018059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TET2, DNMT3A, IDH1, and JAK2 Mutation in Myeloproliferative Neoplasms in southern Iran.
    Abedi E; Ramzi M; Karimi M; Yaghobi R; Mohammadi H; Bayat E; Moghadam M; Farokhian F; Dehghani M; Golafshan HA; Haghpanah S
    Int J Organ Transplant Med; 2021; 12(3):12-20. PubMed ID: 35509721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy.
    Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W
    Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK2V617F mutant endothelial cells promote neoplastic hematopoiesis in a mixed vascular microenvironment.
    Mazzeo C; Quan M; Wong H; Castiglione M; Kaushansky K; Zhan H
    Blood Cells Mol Dis; 2021 Sep; 90():102585. PubMed ID: 34139651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms.
    Kjær L
    Cancers (Basel); 2020 Jul; 12(8):. PubMed ID: 32731609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ptch2 loss drives myeloproliferation and myeloproliferative neoplasm progression.
    Klein C; Zwick A; Kissel S; Forster CU; Pfeifer D; Follo M; Illert AL; Decker S; Benkler T; Pahl H; Oostendorp RA; Aumann K; Duyster J; Dierks C
    J Exp Med; 2016 Feb; 213(2):273-90. PubMed ID: 26834157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.