These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26256951)

  • 81. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques.
    Shui W; Zhou M; Chen S; Pan Z; Deng Q; Yao Y; Pan H; He T; Wang X
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):13-23. PubMed ID: 27480284
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Development of 3-dimensional printed simulation surgical training models for endoscopic endonasal and transorbital surgery.
    Lee WJ; Kim YH; Hong SD; Rho TH; Kim YH; Dho YS; Hong CK; Kong DS
    Front Oncol; 2022; 12():966051. PubMed ID: 35992880
    [TBL] [Abstract][Full Text] [Related]  

  • 83. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.
    Barber SR; Kozin ED; Dedmon M; Lin BM; Lee K; Sinha S; Black N; Remenschneider AK; Lee DJ
    Int J Pediatr Otorhinolaryngol; 2016 Nov; 90():113-118. PubMed ID: 27729115
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evaluating phone camera and cloud service-based 3D imaging and printing of human bones for anatomical education.
    Li QY; Zhang Q; Yan C; He Y; Phillip M; Li F; Pan AH
    BMJ Open; 2020 Feb; 10(2):e034900. PubMed ID: 32041863
    [TBL] [Abstract][Full Text] [Related]  

  • 85. 3D printed rodent skin-skull-brain model: A novel animal-free approach for neurosurgical training.
    Bainier M; Su A; Redondo RL
    PLoS One; 2021; 16(6):e0253477. PubMed ID: 34161366
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Lamb Temporal Bone as a Surgical Training Model of Round Window Cochlear Implant Electrode Insertion.
    Mantokoudis G; Huth ME; Weisstanner C; Friedrich HM; Nauer C; Candreia C; Caversaccio MD; Senn P
    Otol Neurotol; 2016 Jan; 37(1):52-6. PubMed ID: 26649606
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Creation of a 3D printed temporal bone model from clinical CT data.
    Cohen J; Reyes SA
    Am J Otolaryngol; 2015; 36(5):619-24. PubMed ID: 26106016
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Simulation of laryngotracheal reconstruction with 3D-printed models and porcine cadaveric models.
    Falls M; Vincze J; Brown J; Witsberger C; Discolo C; Partain M; Rosen P; Ting J; Zopf D
    Laryngoscope Investig Otolaryngol; 2022 Oct; 7(5):1603-1610. PubMed ID: 36258885
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds.
    Suzuki M; Hagiwara A; Ogawa Y; Ono H
    J Laryngol Otol; 2007 Nov; 121(11):1025-8. PubMed ID: 17381895
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The role of three-dimensional printed models of skull in anatomy education: a randomized controlled trail.
    Chen S; Pan Z; Wu Y; Gu Z; Li M; Liang Z; Zhu H; Yao Y; Shui W; Shen Z; Zhao J; Pan H
    Sci Rep; 2017 Apr; 7(1):575. PubMed ID: 28373643
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Three-dimensional temporal bone reconstruction from histological sections.
    Ahmad N; Wright A
    J Laryngol Otol; 2014 May; 128(5):416-20. PubMed ID: 24865375
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training.
    Alrasheed AS; Nguyen LHP; Mongeau L; Funnell WRJ; Tewfik MA
    Int Forum Allergy Rhinol; 2017 Aug; 7(8):837-841. PubMed ID: 28614638
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.
    Kong X; Nie L; Zhang H; Wang Z; Ye Q; Tang L; Li J; Huang W
    J Surg Educ; 2016; 73(2):264-9. PubMed ID: 26868314
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An Open-Source Three-Dimensionally Printed Laryngeal Model for Injection Laryngoplasty Training.
    Lee M; Ang C; Andreadis K; Shin J; Rameau A
    Laryngoscope; 2021 Mar; 131(3):E890-E895. PubMed ID: 32750164
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evaluation of an Infant Temporal-Bone Model as Training Tool.
    Probst R; Stump R; Mokosch M; Röösli C
    Otol Neurotol; 2018 Jul; 39(6):e448-e452. PubMed ID: 29889782
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evaluation of intraoperative cone beam computed tomography and optical drill tracking in temporal bone surgery.
    Erovic BM; Daly MJ; Chan HH; James AL; Papsin BC; Pothier DD; Dixon B; Irish JC
    Laryngoscope; 2013 Nov; 123(11):2823-8. PubMed ID: 23918182
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Navigated percutaneous lumbosacral interbody fusion: a feasibility study with three-dimensional surgical simulation and cadaveric experiment.
    Wang Y; Le DQ; Li H; Wang M; Bünger CE
    Spine (Phila Pa 1976); 2011 Jul; 36(16):E1105-11. PubMed ID: 21289578
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A time-sensitive rubric for assessing mastoidectomy proficiency.
    Tolisano AM; Littlefield PD
    Am J Otolaryngol; 2020; 41(6):102457. PubMed ID: 32247707
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The process of 3D printed skull models for anatomy education.
    Shen Z; Yao Y; Xie Y; Guo C; Shang X; Dong X; Li Y; Pan Z; Chen S; Xiong G; Wang FY; Pan H
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):121-130. PubMed ID: 31012745
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors.
    Oishi M; Fukuda M; Yajima N; Yoshida K; Takahashi M; Hiraishi T; Takao T; Saito A; Fujii Y
    J Neurosurg; 2013 Jul; 119(1):94-105. PubMed ID: 23581591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.