BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26257102)

  • 1. Multiple conversion between the genes encoding bacterial class-I release factors.
    Ishikawa SA; Kamikawa R; Inagaki Y
    Sci Rep; 2015 Aug; 5():12406. PubMed ID: 26257102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli.
    Mora L; Zavialov A; Ehrenberg M; Buckingham RH
    Mol Microbiol; 2003 Dec; 50(5):1467-76. PubMed ID: 14651631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue.
    Kurita D; Abo T; Himeno H
    J Biol Chem; 2020 Sep; 295(38):13326-13337. PubMed ID: 32727848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria
    Korkmaz G; Sanyal S
    J Biol Chem; 2017 Sep; 292(36):15134-15142. PubMed ID: 28743745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.
    Wei Y; Wang J; Xia X
    Mol Biol Evol; 2016 Sep; 33(9):2357-67. PubMed ID: 27297468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Translation Termination: RF1 Dissociation Follows Dissociation of RF3 from the Ribosome.
    Shi X; Joseph S
    Biochemistry; 2016 Nov; 55(45):6344-6354. PubMed ID: 27779391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles for release factor 1 and release factor 2 in translational quality control.
    Petropoulos AD; McDonald ME; Green R; Zaher HS
    J Biol Chem; 2014 Jun; 289(25):17589-96. PubMed ID: 24798339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic insights into stop codon recognition by release factor 1.
    Trappl K; Mathew MA; Joseph S
    PLoS One; 2014; 9(4):e94058. PubMed ID: 24699820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1.
    Kipper K; Sild S; Hetényi C; Remme J; Liiv A
    Biochimie; 2011 May; 93(5):834-44. PubMed ID: 21281690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of ribosomes and release factors during translation termination in
    Adio S; Sharma H; Senyushkina T; Karki P; Maracci C; Wohlgemuth I; Holtkamp W; Peske F; Rodnina MV
    Elife; 2018 Jun; 7():. PubMed ID: 29889659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and diversification of the organellar release factor family.
    Duarte I; Nabuurs SB; Magno R; Huynen M
    Mol Biol Evol; 2012 Nov; 29(11):3497-512. PubMed ID: 22688947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome Induces a Closed to Open Conformational Change in Release Factor 1.
    Trappl K; Joseph S
    J Mol Biol; 2016 Mar; 428(6):1333-1344. PubMed ID: 26827724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner.
    Freistroffer DV; Pavlov MY; MacDougall J; Buckingham RH; Ehrenberg M
    EMBO J; 1997 Jul; 16(13):4126-33. PubMed ID: 9233821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.
    Mora L; Heurgué-Hamard V; de Zamaroczy M; Kervestin S; Buckingham RH
    J Biol Chem; 2007 Dec; 282(49):35638-45. PubMed ID: 17932046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors.
    Pierson WE; Hoffer ED; Keedy HE; Simms CL; Dunham CM; Zaher HS
    Cell Rep; 2016 Sep; 17(1):11-18. PubMed ID: 27681416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in RNAs of both ribosomal subunits cause defects in translation termination.
    Arkov AL; Freistroffer DV; Ehrenberg M; Murgola EJ
    EMBO J; 1998 Mar; 17(5):1507-14. PubMed ID: 9482747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis of translation termination in E. coli.
    Baggett NE; Zhang Y; Gross CA
    PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and precise mapping of the Escherichia coli release factor genes by two physical approaches.
    Lee CC; Kohara Y; Akiyama K; Smith CL; Craigen WJ; Caskey CT
    J Bacteriol; 1988 Oct; 170(10):4537-41. PubMed ID: 3049538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome.
    Zeng F; Chen Y; Remis J; Shekhar M; Phillips JC; Tajkhorshid E; Jin H
    Nature; 2017 Jan; 541(7638):554-557. PubMed ID: 28077875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons.
    Ito K; Uno M; Nakamura Y
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8165-9. PubMed ID: 9653158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.