These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A one-compartment fructose/air biological fuel cell based on direct electron transfer. Wu X; Zhao F; Varcoe JR; Thumser AE; Avignone-Rossa C; Slade RC Biosens Bioelectron; 2009 Oct; 25(2):326-31. PubMed ID: 19674887 [TBL] [Abstract][Full Text] [Related]
3. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode. So K; Kawai S; Hamano Y; Kitazumi Y; Shirai O; Hibi M; Ogawa J; Kano K Phys Chem Chem Phys; 2014 Mar; 16(10):4823-9. PubMed ID: 24469104 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of carbon-felt-based multi-enzyme immobilized anodes to oxidize sucrose for biofuel cells. Handa Y; Yamagiwa K; Ikeda Y; Yanagisawa Y; Watanabe S; Yabuuchi N; Komaba S Chemphyschem; 2014 Jul; 15(10):2145-51. PubMed ID: 24826925 [TBL] [Abstract][Full Text] [Related]
6. Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Yin S; Jin Z; Miyake T Biosens Bioelectron; 2019 Sep; 141():111471. PubMed ID: 31252257 [TBL] [Abstract][Full Text] [Related]
7. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Lalaoui N; de Poulpiquet A; Haddad R; Le Goff A; Holzinger M; Gounel S; Mermoux M; Infossi P; Mano N; Lojou E; Cosnier S Chem Commun (Camb); 2015 May; 51(35):7447-50. PubMed ID: 25845356 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode. Korani A; Salimi A Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787 [TBL] [Abstract][Full Text] [Related]
9. Performance of enzymatic fuel cell in cell culture. Lamberg P; Shleev S; Ludwig R; Arnebrant T; Ruzgas T Biosens Bioelectron; 2014 May; 55():168-73. PubMed ID: 24374299 [TBL] [Abstract][Full Text] [Related]
10. Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials. Scherbahn V; Putze MT; Dietzel B; Heinlein T; Schneider JJ; Lisdat F Biosens Bioelectron; 2014 Nov; 61():631-8. PubMed ID: 24967753 [TBL] [Abstract][Full Text] [Related]
11. Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode. Yamamoto K; Matsumoto T; Shimada S; Tanaka T; Kondo A N Biotechnol; 2013 Jun; 30(5):531-5. PubMed ID: 23624306 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of carbon nanotubes and charge transfer complex-based electrodes for a glucose/oxygen biofuel cell. Koo MH; Yoon HH J Nanosci Nanotechnol; 2013 Nov; 13(11):7434-8. PubMed ID: 24245269 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Ramanavicius A; Kausaite A; Ramanaviciene A Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008 [TBL] [Abstract][Full Text] [Related]
15. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490 [TBL] [Abstract][Full Text] [Related]
16. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile. Pang S; Gao Y; Choi S Biosens Bioelectron; 2018 Feb; 100():504-511. PubMed ID: 28972941 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells. Monsalve K; Roger M; Gutierrez-Sanchez C; Ilbert M; Nitsche S; Byrne-Kodjabachian D; Marchi V; Lojou E Bioelectrochemistry; 2015 Dec; 106(Pt A):47-55. PubMed ID: 25960259 [TBL] [Abstract][Full Text] [Related]
18. Self-regulating enzyme-nanotube ensemble films and their application as flexible electrodes for biofuel cells. Miyake T; Yoshino S; Yamada T; Hata K; Nishizawa M J Am Chem Soc; 2011 Apr; 133(13):5129-34. PubMed ID: 21391588 [TBL] [Abstract][Full Text] [Related]
19. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells. Pinyou P; Ruff A; Pöller S; Ma S; Ludwig R; Schuhmann W Chemistry; 2016 Apr; 22(15):5319-26. PubMed ID: 26929043 [TBL] [Abstract][Full Text] [Related]
20. Flexible and Stretchable Enzymatic Biofuel Cell with High Performance Enabled by Textile Electrodes and Polymer Hydrogel Electrolyte. Chen Z; Yao Y; Lv T; Yang Y; Liu Y; Chen T Nano Lett; 2022 Jan; 22(1):196-202. PubMed ID: 34935386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]