These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26257364)

  • 1. Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate.
    Morrell-Falvey JL; Elkins JG; Wang ZW
    J Environ Sci (China); 2015 Aug; 34():212-8. PubMed ID: 26257364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. fSpatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum.
    Wang ZW; Lee SH; Elkins JG; Morrell-Falvey JL
    AMB Express; 2011 Oct; 1():30. PubMed ID: 21982458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis.
    Lochner A; Giannone RJ; Rodriguez M; Shah MB; Mielenz JR; Keller M; Antranikian G; Graham DE; Hettich RL
    Appl Environ Microbiol; 2011 Jun; 77(12):4042-54. PubMed ID: 21498747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE
    Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases.
    Ichikawa S; Karita S
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv202. PubMed ID: 26490947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of affinity digestion for the isolation of cellulosomes from Clostridium thermocellum.
    St Brice LA; Shao X; Izquierdo JA; Lynd LR
    Prep Biochem Biotechnol; 2014; 44(2):206-16. PubMed ID: 24152105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum.
    Lu Y; Zhang YH; Lynd LR
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16165-9. PubMed ID: 17060624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum.
    Holwerda EK; Lynd LR
    Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance technique to multienzymatic complexes.
    Zhou S; Li HF; Garlapalli R; Nokes SE; Flythe M; Rankin SE; Knutson BL
    J Biotechnol; 2017 Jan; 241():42-49. PubMed ID: 27838255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation.
    Koeck DE; Wibberg D; Koellmeier T; Blom J; Jaenicke S; Winkler A; Albersmeier A; Zverlov VV; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2013 Oct; 168(1):62-3. PubMed ID: 23968723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity.
    Kim SK; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass.
    Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L
    Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation.
    Zhang YH; Lynd LR
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7321-5. PubMed ID: 15883376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose.
    Brunecky R; Donohoe BS; Yarbrough JM; Mittal A; Scott BR; Ding H; Taylor Ii LE; Russell JF; Chung D; Westpheling J; Teter SA; Himmel ME; Bomble YJ
    Sci Rep; 2017 Aug; 7(1):9622. PubMed ID: 28851921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically.
    Berger E; Zhang D; Zverlov VV; Schwarz WH
    FEMS Microbiol Lett; 2007 Mar; 268(2):194-201. PubMed ID: 17227469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste.
    Tripathi M; Lal B; Syed A; Mishra PK; Elgorban AM; Verma M; Singh R; Mohammad A; Srivastava N
    Int J Biol Macromol; 2023 Dec; 252():126376. PubMed ID: 37595712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.
    Xu Q; Resch MG; Podkaminer K; Yang S; Baker JO; Donohoe BS; Wilson C; Klingeman DM; Olson DG; Decker SR; Giannone RJ; Hettich RL; Brown SD; Lynd LR; Bayer EA; Himmel ME; Bomble YJ
    Sci Adv; 2016 Feb; 2(2):e1501254. PubMed ID: 26989779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum.
    Ng TK; Ben-Bassat A; Zeikus JG
    Appl Environ Microbiol; 1981 Jun; 41(6):1337-43. PubMed ID: 16345787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.