These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26257637)

  • 1. Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences.
    Bouchard KE; Ganguli S; Brainard MS
    Front Comput Neurosci; 2015; 9():92. PubMed ID: 26257637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic and nonsynaptic plasticity approximating probabilistic inference.
    Tully PJ; Hennig MH; Lansner A
    Front Synaptic Neurosci; 2014; 6():8. PubMed ID: 24782758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity.
    Gütig R; Aharonov R; Rotter S; Sompolinsky H
    J Neurosci; 2003 May; 23(9):3697-714. PubMed ID: 12736341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive STDP Learning of Overlapping Spatial Patterns.
    Krunglevicius D
    Neural Comput; 2015 Aug; 27(8):1673-85. PubMed ID: 26079753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.
    Panda P; Roy K
    Front Neurosci; 2017; 11():693. PubMed ID: 29311774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic encoding of temporal contiguity.
    Ostojic S; Fusi S
    Front Comput Neurosci; 2013; 7():32. PubMed ID: 23641210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.
    Trapp P; Echeveste R; Gros C
    Sci Rep; 2018 Jun; 8(1):8939. PubMed ID: 29895972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Developmental Switch for Hebbian Plasticity.
    Martens MB; Celikel T; Tiesinga PH
    PLoS Comput Biol; 2015 Jul; 11(7):e1004386. PubMed ID: 26172394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release.
    Faghihi F; Moustafa AA
    Front Cell Neurosci; 2015; 9():164. PubMed ID: 25972786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic stabilization of output rates by spike-based Hebbian learning.
    Kempter R; Gerstner W; van Hemmen JL
    Neural Comput; 2001 Dec; 13(12):2709-41. PubMed ID: 11705408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic modifications depend on synapse location and activity: a biophysical model of STDP.
    Saudargiene A; Porr B; Wörgötter F
    Biosystems; 2005; 79(1-3):3-10. PubMed ID: 15649584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hebbian and Homeostatic Synaptic Plasticity-Do Alterations of One Reflect Enhancement of the Other?
    Galanis C; Vlachos A
    Front Cell Neurosci; 2020; 14():50. PubMed ID: 32256317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hebbian learning from higher-order correlations requires crosstalk minimization.
    Cox KJ; Adams PR
    Biol Cybern; 2014 Aug; 108(4):405-22. PubMed ID: 24862556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling synaptic plasticity in conjuction with the timing of pre- and postsynaptic action potentials.
    Kistler WM; van Hemmen JL
    Neural Comput; 2000 Feb; 12(2):385-405. PubMed ID: 10636948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.