These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 26257714)
1. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Nielsen M; Revsbech NP; Kühl M Front Microbiol; 2015; 6():726. PubMed ID: 26257714 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen Dynamics in Cyanobacteria Dominated Microbial Mats Measured by Novel Combined H Maegaard K; Nielsen LP; Revsbech NP Front Microbiol; 2017; 8():2022. PubMed ID: 29093704 [TBL] [Abstract][Full Text] [Related]
3. In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle. Revsbech NP; Trampe E; Lichtenberg M; Ward DM; Kühl M Appl Environ Microbiol; 2016 Jul; 82(14):4209-4217. PubMed ID: 27208140 [TBL] [Abstract][Full Text] [Related]
4. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat. Kühl M; Fenchel T Microb Ecol; 2000 Aug; 40(2):94-103. PubMed ID: 11029078 [TBL] [Abstract][Full Text] [Related]
5. Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat. Jørgensen BB; Cohen Y; Revsbech NP Appl Environ Microbiol; 1986 Feb; 51(2):408-17. PubMed ID: 16346997 [TBL] [Abstract][Full Text] [Related]
6. Omics-Inferred Partitioning and Expression of Diverse Biogeochemical Functions in a Low-O Grim SL; Voorhies AA; Biddanda BA; Jain S; Nold SC; Green R; Dick GJ mSystems; 2021 Dec; 6(6):e0104221. PubMed ID: 34874776 [TBL] [Abstract][Full Text] [Related]
7. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Lee JZ; Burow LC; Woebken D; Everroad RC; Kubo MD; Spormann AM; Weber PK; Pett-Ridge J; Bebout BM; Hoehler TM Front Microbiol; 2014; 5():61. PubMed ID: 24616716 [TBL] [Abstract][Full Text] [Related]
8. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Wieland A; Zopfi J; Benthien M; Kühl M Microb Ecol; 2005 Jan; 49(1):34-49. PubMed ID: 15614465 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Hoffmann D; Maldonado J; Wojciechowski MF; Garcia-Pichel F Environ Microbiol; 2015 Oct; 17(10):3738-53. PubMed ID: 25580666 [TBL] [Abstract][Full Text] [Related]
10. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Canfield DE; Des Marais DJ Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735 [TBL] [Abstract][Full Text] [Related]
11. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. de Beer D; Weber M; Chennu A; Hamilton T; Lott C; Macalady J; M Klatt J Environ Microbiol; 2017 Mar; 19(3):1251-1265. PubMed ID: 28035767 [TBL] [Abstract][Full Text] [Related]
12. Distribution of types of microbial mats at the Ebro Delta, Spain. Guerrero R; Urmeneta J; Rampone G Biosystems; 1993; 31(2-3):135-44. PubMed ID: 8155846 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. Klatt JM; Haas S; Yilmaz P; de Beer D; Polerecky L Environ Microbiol; 2015 Sep; 17(9):3301-13. PubMed ID: 25630511 [TBL] [Abstract][Full Text] [Related]
14. Physiological ecology of cyanobacteria in microbial mats and other communities. Stal LJ New Phytol; 1995 Sep; 131(1):1-32. PubMed ID: 33863161 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation of oil by marine microbial mats. Cohen Y Int Microbiol; 2002 Dec; 5(4):189-93. PubMed ID: 12497184 [TBL] [Abstract][Full Text] [Related]
16. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Martinez JN; Nishihara A; Lichtenberg M; Trampe E; Kawai S; Tank M; Kühl M; Hanada S; Thiel V Microbes Environ; 2019 Dec; 34(4):374-387. PubMed ID: 31685759 [TBL] [Abstract][Full Text] [Related]
17. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat. Klatt JM; Gomez-Saez GV; Meyer S; Ristova PP; Yilmaz P; Granitsiotis MS; Macalady JL; Lavik G; Polerecky L; Bühring SI ISME J; 2020 Dec; 14(12):3024-3037. PubMed ID: 32770117 [TBL] [Abstract][Full Text] [Related]
18. Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition. Wieland A; Kühl M; McGowan L; Fourçans A; Duran R; Caumette P; García de Oteyza T; Grimalt JO; Solé A; Diestra E; Esteve I; Herbert RA Microb Ecol; 2003 Nov; 46(4):371-90. PubMed ID: 12904912 [TBL] [Abstract][Full Text] [Related]
19. Effect of oxygen concentration on photosynthesis and respiration in two hypersaline microbial mats. Grötzschel S; de Beer D Microb Ecol; 2002 Oct; 44(3):208-16. PubMed ID: 12154389 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Schreiber F; Polerecky L; de Beer D Anal Chem; 2008 Feb; 80(4):1152-8. PubMed ID: 18197634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]