These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 26258549)
21. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. Barbiero M; Castelletto S; Zhang Q; Chen Y; Charnley M; Russell S; Gu M Nanoscale; 2020 Apr; 12(16):8847-8857. PubMed ID: 32254877 [TBL] [Abstract][Full Text] [Related]
22. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Schirhagl R; Chang K; Loretz M; Degen CL Annu Rev Phys Chem; 2014; 65():83-105. PubMed ID: 24274702 [TBL] [Abstract][Full Text] [Related]
23. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Liu GQ; Liu RB; Li Q Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628 [TBL] [Abstract][Full Text] [Related]
24. Optical magnetic imaging of living cells. Le Sage D; Arai K; Glenn DR; DeVience SJ; Pham LM; Rahn-Lee L; Lukin MD; Yacoby A; Komeili A; Walsworth RL Nature; 2013 Apr; 496(7446):486-9. PubMed ID: 23619694 [TBL] [Abstract][Full Text] [Related]
25. High sensitivity magnetic imaging using an array of spins in diamond. Steinert S; Dolde F; Neumann P; Aird A; Naydenov B; Balasubramanian G; Jelezko F; Wrachtrup J Rev Sci Instrum; 2010 Apr; 81(4):043705. PubMed ID: 20441343 [TBL] [Abstract][Full Text] [Related]
26. Magneto-optical imaging of thin magnetic films using spins in diamond. Simpson DA; Tetienne JP; McCoey JM; Ganesan K; Hall LT; Petrou S; Scholten RE; Hollenberg LC Sci Rep; 2016 Mar; 6():22797. PubMed ID: 26972730 [TBL] [Abstract][Full Text] [Related]
27. Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications. Boretti A; Rosa L; Blackledge J; Castelletto S Beilstein J Nanotechnol; 2019; 10():2128-2151. PubMed ID: 31807400 [TBL] [Abstract][Full Text] [Related]
28. Real time magnetic field sensing and imaging using a single spin in diamond. Schoenfeld RS; Harneit W Phys Rev Lett; 2011 Jan; 106(3):030802. PubMed ID: 21405264 [TBL] [Abstract][Full Text] [Related]
29. Dressed-state resonant coupling between bright and dark spins in diamond. Belthangady C; Bar-Gill N; Pham LM; Arai K; Le Sage D; Cappellaro P; Walsworth RL Phys Rev Lett; 2013 Apr; 110(15):157601. PubMed ID: 25167312 [TBL] [Abstract][Full Text] [Related]
30. Relaxometry with Nitrogen Vacancy (NV) Centers in Diamond. Mzyk A; Sigaeva A; Schirhagl R Acc Chem Res; 2022 Dec; 55(24):3572-3580. PubMed ID: 36475573 [TBL] [Abstract][Full Text] [Related]
31. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Ariyaratne A; Bluvstein D; Myers BA; Jayich ACB Nat Commun; 2018 Jun; 9(1):2406. PubMed ID: 29921836 [TBL] [Abstract][Full Text] [Related]
32. Magnetometry with nitrogen-vacancy defects in diamond. Rondin L; Tetienne JP; Hingant T; Roch JF; Maletinsky P; Jacques V Rep Prog Phys; 2014 May; 77(5):056503. PubMed ID: 24801494 [TBL] [Abstract][Full Text] [Related]
33. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging. Boretti A; Rosa L; Castelletto S Small; 2015 Sep; 11(34):4229-36. PubMed ID: 26113221 [TBL] [Abstract][Full Text] [Related]
34. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber. Fedotov IV; Blakley SM; Serebryannikov EE; Hemmer P; Scully MO; Zheltikov AM Opt Lett; 2016 Feb; 41(3):472-5. PubMed ID: 26907400 [TBL] [Abstract][Full Text] [Related]
35. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. Zhang T; Pramanik G; Zhang K; Gulka M; Wang L; Jing J; Xu F; Li Z; Wei Q; Cigler P; Chu Z ACS Sens; 2021 Jun; 6(6):2077-2107. PubMed ID: 34038091 [TBL] [Abstract][Full Text] [Related]
36. Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Laraoui A; Hodges JS; Meriles CA Nano Lett; 2012 Jul; 12(7):3477-82. PubMed ID: 22725686 [TBL] [Abstract][Full Text] [Related]
37. Environmentally Mediated Coherent Control of a Spin Qubit in Diamond. Lillie SE; Broadway DA; Wood JDA; Simpson DA; Stacey A; Tetienne JP; Hollenberg LCL Phys Rev Lett; 2017 Apr; 118(16):167204. PubMed ID: 28474945 [TBL] [Abstract][Full Text] [Related]
38. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Barbiero M; Castelletto S; Gan X; Gu M Light Sci Appl; 2017 Nov; 6(11):e17085. PubMed ID: 30167213 [TBL] [Abstract][Full Text] [Related]
39. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Barry JF; Turner MJ; Schloss JM; Glenn DR; Song Y; Lukin MD; Park H; Walsworth RL Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14133-14138. PubMed ID: 27911765 [TBL] [Abstract][Full Text] [Related]
40. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Pelliccione M; Jenkins A; Ovartchaiyapong P; Reetz C; Emmanouilidou E; Ni N; Bleszynski Jayich AC Nat Nanotechnol; 2016 Aug; 11(8):700-5. PubMed ID: 27136130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]