BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26258628)

  • 1. Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials.
    Vo TH; Perera UG; Shekhirev M; Mehdi Pour M; Kunkel DA; Lu H; Gruverman A; Sutter E; Cotlet M; Nykypanchuk D; Zahl P; Enders A; Sinitskii A; Sutter P
    Nano Lett; 2015 Sep; 15(9):5770-7. PubMed ID: 26258628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.
    Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K
    J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture.
    Liu Y; Wang X; Wan W; Li L; Dong Y; Zhao Z; Qiu J
    Nanoscale; 2016 Jan; 8(4):2159-67. PubMed ID: 26730571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene nanoribbon heterojunctions.
    Cai J; Pignedoli CA; Talirz L; Ruffieux P; Söde H; Liang L; Meunier V; Berger R; Li R; Feng X; Müllen K; Fasel R
    Nat Nanotechnol; 2014 Nov; 9(11):896-900. PubMed ID: 25194948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2D self-assembly and electronic characterization of oxygen-boron-oxygen-doped chiral graphene nanoribbons.
    Jin L; Bilbao N; Lv Y; Wang XY; Soltani P; Mali KS; Narita A; De Feyter S; Müllen K; Chen Z
    Chem Commun (Camb); 2021 Jun; 57(49):6031-6034. PubMed ID: 34032226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-up synthesis of chemically precise graphene nanoribbons.
    Narita A; Feng X; Müllen K
    Chem Rec; 2015 Feb; 15(1):295-309. PubMed ID: 25414146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermi-Level Engineering of Nitrogen Core-Doped Armchair Graphene Nanoribbons.
    Wen ECH; Jacobse PH; Jiang J; Wang Z; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2023 Sep; 145(35):19338-19346. PubMed ID: 37611208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
    Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A
    Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroatom-Doped Nanographenes with Structural Precision.
    Wang XY; Yao X; Narita A; Müllen K
    Acc Chem Res; 2019 Sep; 52(9):2491-2505. PubMed ID: 31478641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes.
    Lee HJ; Lim J; Cho SY; Kim H; Lee C; Lee GY; Sasikala SP; Yun T; Choi DS; Jeong MS; Jung HT; Hong S; Kim SO
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38006-38015. PubMed ID: 31544452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications.
    Shekhirev M; Vo TH; Mehdi Pour M; Lipatov A; Munukutla S; Lyding JW; Sinitskii A
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):693-700. PubMed ID: 27933763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long and oriented graphene nanoribbon synthesis from well-ordered 10,10'-dibromo-9,9'-bianthracene monolayer on crystalline Au surfaces.
    Yano M; Yasuda S; Fukutani K; Asaoka H
    RSC Adv; 2023 May; 13(21):14089-14096. PubMed ID: 37179998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of polybenzoquinolines as precursors for nitrogen-doped graphene nanoribbons.
    Dibble DJ; Park YS; Mazaheripour A; Umerani MJ; Ziller JW; Gorodetsky AA
    Angew Chem Int Ed Engl; 2015 May; 54(20):5883-7. PubMed ID: 25823492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.