These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 26258851)

  • 41. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric.
    Kim BS; Kim JS; Chung YS; Sin YW; Ryu KH; Lee J; You HK
    J Biomed Mater Res A; 2013 Jun; 101(6):1550-8. PubMed ID: 23135904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.
    Lin BN; Whu SW; Chen CH; Hsu FY; Chen JC; Liu HW; Chen CH; Liou HM
    J Tissue Eng Regen Med; 2013 Nov; 7(11):841-54. PubMed ID: 22744907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration.
    Shamaz BH; Anitha A; Vijayamohan M; Kuttappan S; Nair S; Nair MB
    Nanotechnology; 2015 Oct; 26(40):405101. PubMed ID: 26373968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo study on osteogenic efficiency of nHA/ gel porous scaffold with nacre water-soluble matrix.
    Li SG; Guo ZL; Tao SY; Han T; Zhou J; Lin WY; Guo X; Li CX; Diwas S; Hu XW
    Tissue Cell; 2024 Jun; 88():102347. PubMed ID: 38489914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biocompatibility and in vivo osteogenic capability of novel bone tissue engineering scaffold A-W-MGC/CS.
    Li C; Wang GX; Zhang Z; Liu DP
    J Orthop Surg Res; 2014 Dec; 9():100. PubMed ID: 25499472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat.
    Tavakol S; Azami M; Khoshzaban A; Ragerdi Kashani I; Tavakol B; Hoveizi E; Rezayat Sorkhabadi SM
    Cell Biol Int; 2013 Nov; 37(11):1181-9. PubMed ID: 23765607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Vivo feature of the regenerative potential of chitosan and alginate based osteoplastic composites doped with calcium phosphates, zinc ions, and vitamin D2.
    Korenkov O; Sukhodub L; Kumeda M; Sukhodub L
    Ann Anat; 2024 Aug; 255():152290. PubMed ID: 38821427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration.
    Su J; Xu H; Sun J; Gong X; Zhao H
    Int J Mol Sci; 2013 Jun; 14(6):12714-28. PubMed ID: 23778088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Ren N; Wang J; Liu H; Tao X
    Tissue Eng Part A; 2011 May; 17(9-10):1341-9. PubMed ID: 21247339
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects.
    Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B
    Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect.
    Wang G; Yang H; Li M; Lu S; Chen X; Cai X
    J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration.
    Lee JS; Baek SD; Venkatesan J; Bhatnagar I; Chang HK; Kim HT; Kim SK
    Int J Biol Macromol; 2014 Jun; 67():360-6. PubMed ID: 24705167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S; Saravanan S; Sastry TP; Selvamurugan N
    J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioactive Nanocomposite Microsponges for Effective Reconstruction of Critical-Sized Calvarial Defects in Rat Model.
    Wang M; Gu Z; Li B; Zhang J; Yang L; Zheng X; Pan F; He J
    Int J Nanomedicine; 2022; 17():6593-6606. PubMed ID: 36594040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects.
    Zhou D; Qi C; Chen YX; Zhu YJ; Sun TW; Chen F; Zhang CQ
    Int J Nanomedicine; 2017; 12():2673-2687. PubMed ID: 28435251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Preliminary study on chitosan/HAP bilayered scaffold].
    Zhang H; Wang W; Chu D; Liu Y; Guan J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects.
    Oest ME; Dupont KM; Kong HJ; Mooney DJ; Guldberg RE
    J Orthop Res; 2007 Jul; 25(7):941-50. PubMed ID: 17415756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.