These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26258872)
1. Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: in Vitro and in Vivo Studies. Liu X; Wei D; Zhong J; Ma M; Zhou J; Peng X; Ye Y; Sun G; He D ACS Appl Mater Interfaces; 2015 Aug; 7(33):18540-52. PubMed ID: 26258872 [TBL] [Abstract][Full Text] [Related]
2. Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures. Sun G; Wei D; Liu X; Chen Y; Li M; He D; Zhong J Nanomedicine; 2013 Aug; 9(6):829-38. PubMed ID: 23318398 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702 [TBL] [Abstract][Full Text] [Related]
4. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
6. An injectable, biodegradable calcium phosphate cement containing poly lactic-co-glycolic acid as a bone substitute in ex vivo human vertebral compression fracture and rabbit bone defect models. Duan X; Liao HX; Zou HZ; Zhang ZJ; Ye JD; Liao WM Connect Tissue Res; 2018 Jan; 59(1):55-65. PubMed ID: 28267379 [TBL] [Abstract][Full Text] [Related]
7. Effect of ultrafine poly(ε-caprolactone) fibers on calcium phosphate cement: in vitro degradation and in vivo regeneration. Yang B; Zuo Y; Zou Q; Li L; Li J; Man Y; Li Y Int J Nanomedicine; 2016; 11():163-77. PubMed ID: 26792992 [TBL] [Abstract][Full Text] [Related]
8. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Meng D; Dong L; Wen Y; Xie Q Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197 [TBL] [Abstract][Full Text] [Related]
10. Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Bao C; Chen W; Weir MD; Thein-Han W; Xu HH Acta Biomater; 2011 Nov; 7(11):4037-44. PubMed ID: 21763791 [TBL] [Abstract][Full Text] [Related]
11. Strontium exerts dual effects on calcium phosphate cement: Accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo. Kuang GM; Yau WP; Wu J; Yeung KW; Pan H; Lam WM; Lu WW; Chiu KY J Biomed Mater Res A; 2015 May; 103(5):1613-21. PubMed ID: 25087971 [TBL] [Abstract][Full Text] [Related]
12. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements. An J; Liao H; Kucko NW; Herber RP; Wolke JG; van den Beucken JJ; Jansen JA; Leeuwenburgh SC J Biomed Mater Res A; 2016 May; 104(5):1072-81. PubMed ID: 26743230 [TBL] [Abstract][Full Text] [Related]
13. Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic-co-glycolic acid) Network and Bioactive Wollastonite. Qian G; Fan P; He F; Ye J Adv Healthc Mater; 2019 May; 8(9):e1801325. PubMed ID: 30901163 [TBL] [Abstract][Full Text] [Related]
14. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo. Wang J; Qiao P; Dong L; Li F; Xu T; Xie Q Biomed Mater Eng; 2014; 24(1):835-43. PubMed ID: 24211970 [TBL] [Abstract][Full Text] [Related]
15. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Zuo Y; Yang F; Wolke JG; Li Y; Jansen JA Acta Biomater; 2010 Apr; 6(4):1238-47. PubMed ID: 19861181 [TBL] [Abstract][Full Text] [Related]
16. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation. Yamamoto S; Matsushima Y; Kanayama Y; Seki A; Honda H; Unuma H; Sakai Y J Mater Sci Mater Med; 2017 Mar; 28(3):48. PubMed ID: 28176192 [TBL] [Abstract][Full Text] [Related]
17. Long-term biological performance of injectable and degradable calcium phosphate cement. Grosfeld EC; Hoekstra JW; Herber RP; Ulrich DJ; Jansen JA; van den Beucken JJ Biomed Mater; 2016 Dec; 12(1):015009. PubMed ID: 27934787 [TBL] [Abstract][Full Text] [Related]
18. Reinforcement of calcium phosphate cement using alkaline-treated silk fibroin. Hu M; He Z; Han F; Shi C; Zhou P; Ling F; Zhu X; Yang H; Li B Int J Nanomedicine; 2018; 13():7183-7193. PubMed ID: 30519015 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of biodegradation and osseointegration of poly(ε-caprolactone)/calcium phosphate ceramic composite screws for osteofixation using calcium sulfate. Wu CC; Hsu LH; Tsai YF; Sumi S; Yang KC Biomed Mater; 2016 Apr; 11(2):025012. PubMed ID: 27041468 [TBL] [Abstract][Full Text] [Related]
20. Assessment of the suitability of a new composite as a bone defect filler in a rabbit model. Pan Z; Jiang P J Tissue Eng Regen Med; 2008 Aug; 2(6):347-53. PubMed ID: 18612971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]