These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26259108)

  • 61. A sulfated ZrO2 hollow nanostructure as an acid catalyst in the dehydration of fructose to 5-hydroxymethylfurfural.
    Joo JB; Vu A; Zhang Q; Dahl M; Gu M; Zaera F; Yin Y
    ChemSusChem; 2013 Oct; 6(10):2001-8. PubMed ID: 24023048
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PolyE-IL Is an Efficient and Recyclable Homogeneous Catalyst for the Synthesis of 5-Hydroxymethyl Furfural in a Green Solvent.
    Vasishta A; Pawar HS
    ACS Omega; 2023 Jan; 8(1):1047-1059. PubMed ID: 36643450
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catalytic Low-Temperature Dehydration of Fructose to 5-Hydroxymethylfurfural Using Acidic Deep Eutectic Solvents and Polyoxometalate Catalysts.
    Körner S; Albert J; Held C
    Front Chem; 2019; 7():661. PubMed ID: 31649916
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Catalytic dehydration of carbohydrates on in situ exfoliatable layered niobic acid in an aqueous system under microwave irradiation.
    Wu Q; Yan Y; Zhang Q; Lu J; Yang Z; Zhang Y; Tang Y
    ChemSusChem; 2013 May; 6(5):820-5. PubMed ID: 23606474
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Task-Specific Organic Salts and Ionic Liquids Binary Mixtures: A Combination to Obtain 5-Hydroxymethylfurfural From Carbohydrates.
    Marullo S; Rizzo C; D'Anna F
    Front Chem; 2019; 7():134. PubMed ID: 30949470
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids.
    Xie H; Zhao ZK; Wang Q
    ChemSusChem; 2012 May; 5(5):901-5. PubMed ID: 22517537
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of 5-hydroxymethylfurfural using magnetic Fe
    Li X; Li M; Liu Y; Feng Y; Pan P
    RSC Adv; 2022 Apr; 12(21):13251-13260. PubMed ID: 35520126
    [TBL] [Abstract][Full Text] [Related]  

  • 68. One-Pot Synthesis of 5-Hydroxymethylfurfural from Glucose by Brønsted Acid-Free Bifunctional Porous Coordination Polymers in Water.
    Liang F; Chen D; Liu H; Liu W; Xian M; Feng D
    ACS Omega; 2019 May; 4(5):9316-9323. PubMed ID: 31460021
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids.
    Zhang Z; Wang Q; Xie H; Liu W; Zhao ZK
    ChemSusChem; 2011 Jan; 4(1):131-8. PubMed ID: 21226223
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural.
    Wang H; Deng T; Wang Y; Qi Y; Hou X; Zhu Y
    Bioresour Technol; 2013 May; 136():394-400. PubMed ID: 23567707
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Supported Poly(Ionic Liquid)-Heteropolyacid Based Materials for Heterogeneous Catalytic Fructose Dehydration in Aqueous Medium.
    García-López EI; Campisciano V; Giacalone F; Liotta LF; Marcì G
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897898
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nanoparticulate and microporous solid acid catalysts bearing aliphatic sulfonic acids for biomass conversion.
    Cho K; Lee SM; Kim HJ; Ko YJ; Son SU
    Chem Commun (Camb); 2019 Mar; 55(26):3697-3700. PubMed ID: 30799477
    [TBL] [Abstract][Full Text] [Related]  

  • 73. LiCl-promoted-dehydration of fructose-based carbohydrates into 5-hydroxymethylfurfural in isopropanol.
    Ma H; Li Z; Chen L; Teng J
    RSC Adv; 2021 Jan; 11(3):1404-1410. PubMed ID: 35424116
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system.
    Qi X; Watanabe M; Aida TM; Smith RL
    ChemSusChem; 2010 Sep; 3(9):1071-7. PubMed ID: 20661994
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation.
    Mushrif SH; Caratzoulas S; Vlachos DG
    Phys Chem Chem Phys; 2012 Feb; 14(8):2637-44. PubMed ID: 22273799
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Governing chemistry of cellulose hydrolysis in supercritical water.
    Cantero DA; Bermejo MD; Cocero MJ
    ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Influence of a Lewis acid and a Brønsted acid on the conversion of microcrystalline cellulose into 5-hydroxymethylfurfural in a single-phase reaction system of water and 1,2-dimethoxyethane.
    Zhao Y; Wang S; Lin H; Chen J; Xu H
    RSC Adv; 2018 Feb; 8(13):7235-7242. PubMed ID: 35540323
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nb
    Jiao H; Zhao X; Lv C; Wang Y; Yang D; Li Z; Yao X
    Sci Rep; 2016 Sep; 6():34068. PubMed ID: 27666867
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel efficient mesoporous solid acid catalyst UDCaT-4: dehydration of 2-propanol and alkylation of mesitylene.
    Yadav GD; Murkute AD
    Langmuir; 2004 Dec; 20(26):11607-19. PubMed ID: 15595790
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Di-D-fructose dianhydride-enriched products by acid ion-exchange resin-promoted caramelization of D-fructose: chemical analyses.
    Suárez-Pereira E; Rubio EM; Pilard S; Ortiz Mellet C; García Fernández JM
    J Agric Food Chem; 2010 Feb; 58(3):1777-87. PubMed ID: 20039676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.