BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26259196)

  • 1. Modelling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves.
    Berghuijs HN; Yin X; Ho QT; van der Putten PE; Verboven P; Retta MA; Nicolaï BM; Struik PC
    Plant Sci; 2015 Sep; 238():297-311. PubMed ID: 26259196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of (photo)respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model.
    Berghuijs HNC; Yin X; Ho QT; Retta MA; Verboven P; Nicolaï BM; Struik PC
    PLoS One; 2017; 12(9):e0183746. PubMed ID: 28880924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis.
    Ho QT; Berghuijs HN; Watté R; Verboven P; Herremans E; Yin X; Retta MA; Aernouts B; Saeys W; Helfen L; Farquhar GD; Struik PC; Nicolaï BM
    Plant Cell Environ; 2016 Jan; 39(1):50-61. PubMed ID: 26082079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.
    Retta M; Ho QT; Yin X; Verboven P; Berghuijs HNC; Struik PC; Nicolaï BM
    Plant Sci; 2016 May; 246():37-51. PubMed ID: 26993234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microscale model for combined CO(2) diffusion and photosynthesis in leaves.
    Ho QT; Verboven P; Yin X; Struik PC; Nicolaï BM
    PLoS One; 2012; 7(11):e48376. PubMed ID: 23144870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The maximum carboxylation rate of Rubisco affects CO
    Eckert D; Jensen AM; Gu L
    Plant Physiol Biochem; 2020 Oct; 155():330-337. PubMed ID: 32798901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.
    Li S; Hamani AKM; Zhang Y; Liang Y; Gao Y; Duan A
    BMC Plant Biol; 2021 Nov; 21(1):536. PubMed ID: 34781896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfing the Hyperbola Equations of the Steady-State Farquhar-von Caemmerer-Berry C
    Miranda-Apodaca J; Marcos-Barbero EL; Morcuende R; Arellano JB
    Bull Math Biol; 2019 Dec; 82(1):3. PubMed ID: 31919660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters.
    Sáez PL; Bravo LA; Cavieres LA; Vallejos V; Sanhueza C; Font-Carrascosa M; Gil-Pelegrín E; Javier Peguero-Pina J; Galmés J
    J Exp Bot; 2017 May; 68(11):2871-2883. PubMed ID: 28830100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path.
    Tosens T; Niinemets Ü; Westoby M; Wright IJ
    J Exp Bot; 2012 Sep; 63(14):5105-19. PubMed ID: 22888123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the chloroplastic CO
    Farquhar GD; Busch FA
    New Phytol; 2017 Apr; 214(2):570-584. PubMed ID: 28318033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small dynamic leaf-level model predicting photosynthesis in greenhouse tomatoes.
    Joubert D; Zhang N; Berman SR; Kaiser E; Molenaar J; Stigter JD
    PLoS One; 2023; 18(3):e0275047. PubMed ID: 36927993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.
    Terashima I; Hanba YT; Tazoe Y; Vyas P; Yano S
    J Exp Bot; 2006; 57(2):343-54. PubMed ID: 16356943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state models of photosynthesis.
    von Caemmerer S
    Plant Cell Environ; 2013 Sep; 36(9):1617-30. PubMed ID: 23496792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of photosynthetic CO
    Wieloch T; Augusti A; Schleucher J
    New Phytol; 2023 Jul; 239(2):518-532. PubMed ID: 37219361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesophyll conductance: walls, membranes and spatial complexity.
    Evans JR
    New Phytol; 2021 Feb; 229(4):1864-1876. PubMed ID: 33135193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.
    Brestic M; Zivcak M; Hauptvogel P; Misheva S; Kocheva K; Yang X; Li X; Allakhverdiev SI
    Photosynth Res; 2018 May; 136(2):245-255. PubMed ID: 29383631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesophyll conductance and reaction-diffusion models for CO
    Berghuijs HN; Yin X; Ho QT; Driever SM; Retta MA; Nicolaï BM; Struik PC
    Plant Sci; 2016 Nov; 252():62-75. PubMed ID: 27717479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.