These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 26259225)
1. Analyzing Activity Behavior and Movement in a Naturalistic Environment Using Smart Home Techniques. Cook DJ; Schmitter-Edgecombe M; Dawadi P IEEE J Biomed Health Inform; 2015 Nov; 19(6):1882-92. PubMed ID: 26259225 [TBL] [Abstract][Full Text] [Related]
2. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. Dawadi PN; Cook DJ; Schmitter-Edgecombe M IEEE J Biomed Health Inform; 2016 Jul; 20(4):1188-94. PubMed ID: 26292348 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data. Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727 [TBL] [Abstract][Full Text] [Related]
4. Automated assessment of cognitive health using smart home technologies. Dawadi PN; Cook DJ; Schmitter-Edgecombe M; Parsey C Technol Health Care; 2013; 21(4):323-43. PubMed ID: 23949177 [TBL] [Abstract][Full Text] [Related]
5. Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition. Ng WWY; Xu S; Wang T; Zhang S; Nugent C Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182668 [TBL] [Abstract][Full Text] [Related]
6. Iterative Design of Visual Analytics for a Clinician-in-the-Loop Smart Home. Ghods A; Caffrey K; Lin B; Fraga K; Fritz R; Schmitter-Edgecombe M; Hundhausen C; Cook DJ IEEE J Biomed Health Inform; 2019 Jul; 23(4):1742-1748. PubMed ID: 30106700 [TBL] [Abstract][Full Text] [Related]
7. Human Activity Recognition from Body Sensor Data using Deep Learning. Hassan MM; Huda S; Uddin MZ; Almogren A; Alrubaian M J Med Syst; 2018 Apr; 42(6):99. PubMed ID: 29663090 [TBL] [Abstract][Full Text] [Related]
8. Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer's Disease. Alberdi A; Weakley A; Schmitter-Edgecombe M; Cook DJ; Aztiria A; Basarab A; Barrenechea M IEEE J Biomed Health Inform; 2018 Nov; 22(6):1720-1731. PubMed ID: 29994359 [TBL] [Abstract][Full Text] [Related]
9. Analysis of In-Home Movement Patterns for Depression Assessment in Older Adults - A Feasibility Study. Dennis M; Prabhu D; Baker S; Silvera-Tawil D Stud Health Technol Inform; 2024 Sep; 318():144-149. PubMed ID: 39320196 [TBL] [Abstract][Full Text] [Related]
10. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting. O'Brien MK; Shawen N; Mummidisetty CK; Kaur S; Bo X; Poellabauer C; Kording K; Jayaraman A J Med Internet Res; 2017 May; 19(5):e184. PubMed ID: 28546137 [TBL] [Abstract][Full Text] [Related]
11. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents. Tunca C; Alemdar H; Ertan H; Incel OD; Ersoy C Sensors (Basel); 2014 May; 14(6):9692-719. PubMed ID: 24887044 [TBL] [Abstract][Full Text] [Related]
12. Smart Home-based IoT for Real-time and Secure Remote Health Monitoring of Triage and Priority System using Body Sensors: Multi-driven Systematic Review. Talal M; Zaidan AA; Zaidan BB; Albahri AS; Alamoodi AH; Albahri OS; Alsalem MA; Lim CK; Tan KL; Shir WL; Mohammed KI J Med Syst; 2019 Jan; 43(3):42. PubMed ID: 30648217 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data. Abujrida H; Agu E; Pahlavan K Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650 [TBL] [Abstract][Full Text] [Related]
14. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Ordóñez FJ; Roggen D Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612 [TBL] [Abstract][Full Text] [Related]
15. Physical Human Activity Recognition Using Wearable Sensors. Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450 [TBL] [Abstract][Full Text] [Related]
16. Pure random search for ambient sensor distribution optimisation in a smart home environment. Poland MP; Nugent CD; Wang H; Chen L Technol Health Care; 2011; 19(3):137-60. PubMed ID: 21610296 [TBL] [Abstract][Full Text] [Related]
17. Long-Term Home-Monitoring Sensor Technology in Patients with Parkinson's Disease-Acceptance and Adherence. Botros A; Schütz N; Camenzind M; Urwyler P; Bolliger D; Vanbellingen T; Kistler R; Bohlhalter S; Müri RM; Mosimann UP; Nef T Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779108 [TBL] [Abstract][Full Text] [Related]
18. Feasibility testing of a home-based sensor system to monitor mobility and daily activities in Korean American older adults. Chung J; Demiris G; Thompson HJ; Chen KY; Burr R; Patel S; Fogarty J Int J Older People Nurs; 2017 Mar; 12(1):. PubMed ID: 27431567 [TBL] [Abstract][Full Text] [Related]
19. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care. Zhu H; Chen H; Brown R J Biomed Inform; 2018 Aug; 84():148-158. PubMed ID: 30004019 [TBL] [Abstract][Full Text] [Related]
20. Human Activity Recognition by Combining a Small Number of Classifiers. Nazabal A; Garcia-Moreno P; Artes-Rodriguez A; Ghahramani Z IEEE J Biomed Health Inform; 2016 Sep; 20(5):1342-51. PubMed ID: 26208368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]