These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26259246)
1. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters. Ferrari A; Ginis P; Hardegger M; Casamassima F; Rocchi L; Chiari L IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):764-73. PubMed ID: 26259246 [TBL] [Abstract][Full Text] [Related]
2. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions. Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972 [TBL] [Abstract][Full Text] [Related]
3. A novel adaptive, real-time algorithm to detect gait events from wearable sensors. Chia Bejarano N; Ambrosini E; Pedrocchi A; Ferrigno G; Monticone M; Ferrante S IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):413-22. PubMed ID: 25069118 [TBL] [Abstract][Full Text] [Related]
4. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456 [TBL] [Abstract][Full Text] [Related]
5. Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring. Salarian A; Russmann H; Vingerhoets FJ; Dehollain C; Blanc Y; Burkhard PR; Aminian K IEEE Trans Biomed Eng; 2004 Aug; 51(8):1434-43. PubMed ID: 15311830 [TBL] [Abstract][Full Text] [Related]
6. Gait initiation is impaired in subjects with Parkinson's disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Bonora G; Mancini M; Carpinella I; Chiari L; Horak FB; Ferrarin M Gait Posture; 2017 Jan; 51():218-221. PubMed ID: 27816900 [TBL] [Abstract][Full Text] [Related]
7. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients. Viqueira Villarejo M; Maeso García J; García Zapirain B; Méndez Zorrilla A Biomed Mater Eng; 2014; 24(6):3511-22. PubMed ID: 25227064 [TBL] [Abstract][Full Text] [Related]
8. Turning Analysis during Standardized Test Using On-Shoe Wearable Sensors in Parkinson's Disease. Haji Ghassemi N; Hannink J; Roth N; Gaßner H; Marxreiter F; Klucken J; Eskofier BM Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337067 [TBL] [Abstract][Full Text] [Related]
9. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease. Mariani B; Jiménez MC; Vingerhoets FJ; Aminian K IEEE Trans Biomed Eng; 2013 Jan; 60(1):155-8. PubMed ID: 23268531 [TBL] [Abstract][Full Text] [Related]
10. Assessment of walking features from foot inertial sensing. Sabatini AM; Martelloni C; Scapellato S; Cavallo F IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579 [TBL] [Abstract][Full Text] [Related]
11. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. Chen S; Lach J; Lo B; Yang GZ IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185 [TBL] [Abstract][Full Text] [Related]
12. A new classification of hemiplegia gait patterns based on bicluster analysis of joint moments. Pauk J; Minta-Bielecka K Acta Bioeng Biomech; 2016; 18(4):33-40. PubMed ID: 28133375 [TBL] [Abstract][Full Text] [Related]
13. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. Trojaniello D; Cereatti A; Pelosin E; Avanzino L; Mirelman A; Hausdorff JM; Della Croce U J Neuroeng Rehabil; 2014 Nov; 11():152. PubMed ID: 25388296 [TBL] [Abstract][Full Text] [Related]
14. Detecting freezing-of-gait during unscripted and unconstrained activity. Cole BT; Roy SH; Nawab SH Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5649-52. PubMed ID: 22255621 [TBL] [Abstract][Full Text] [Related]
15. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587 [TBL] [Abstract][Full Text] [Related]
16. Gait evaluation using inertial measurement units in subjects with Parkinson's disease. Zago M; Sforza C; Pacifici I; Cimolin V; Camerota F; Celletti C; Condoluci C; De Pandis MF; Galli M J Electromyogr Kinesiol; 2018 Oct; 42():44-48. PubMed ID: 29940494 [TBL] [Abstract][Full Text] [Related]
17. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom. Bächlin M; Plotnik M; Roggen D; Maidan I; Hausdorff JM; Giladi N; Tröster G IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):436-46. PubMed ID: 19906597 [TBL] [Abstract][Full Text] [Related]
18. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Köse A; Cereatti A; Della Croce U J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235 [TBL] [Abstract][Full Text] [Related]
19. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Yang S; Zhang JT; Novak AC; Brouwer B; Li Q Gait Posture; 2013 Mar; 37(3):354-8. PubMed ID: 23000235 [TBL] [Abstract][Full Text] [Related]
20. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features. Wahid F; Begg R; Lythgo N; Hass CJ; Halgamuge S; Ackland DC J Appl Biomech; 2016 Apr; 32(2):128-39. PubMed ID: 26426798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]