These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26259481)

  • 1. [Effects of transporter Agp1p ubiquitination on nitrogen utilization in Saccharomyces cerevisiae].
    Li Y; Lv Y; Zhou J; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):570-8. PubMed ID: 26259481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Ubiquitination regulation of histidine transporter Hip1p on histidine utilization in Saccharomyces cerevisiae].
    Zhang P; Di Y; Zhou J; Du G; Chen J; Shi Z
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1544-50. PubMed ID: 29741343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast.
    Andréasson C; Neve EP; Ljungdahl PO
    Yeast; 2004 Feb; 21(3):193-9. PubMed ID: 14968425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System.
    Zhang P; Du G; Zou H; Xie G; Chen J; Shi Z; Zhou J
    J Agric Food Chem; 2017 Mar; 65(8):1641-1648. PubMed ID: 28185458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
    Zhang W; Du G; Zhou J; Chen J
    Microbiol Mol Biol Rev; 2018 Jun; 82(1):. PubMed ID: 29436478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of arginine on proline utilization in Saccharomyces cerevisiae.
    Nishimura A; Tanikawa T; Takagi H
    Yeast; 2020 Sep; 37(9-10):531-540. PubMed ID: 32557770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae.
    Zhao X; Zou H; Fu J; Chen J; Zhou J; Du G
    Yeast; 2013 Nov; 30(11):437-47. PubMed ID: 23996237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae.
    Bernard F; André B
    Mol Microbiol; 2001 Jul; 41(2):489-502. PubMed ID: 11489133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases.
    Düring-Olsen L; Regenberg B; Gjermansen C; Kielland-Brandt MC; Hansen J
    Curr Genet; 1999 Jul; 35(6):609-17. PubMed ID: 10467005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast α-arrestin Art3 is a key regulator for arginine-induced endocytosis of the high-affinity proline transporter Put4.
    Nishimura A; Tanahashi R; Takagi H
    Biochem Biophys Res Commun; 2020 Oct; 531(3):416-421. PubMed ID: 32800549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor.
    Poulsen P; Gaber RF; Kielland-Brandt MC
    Mol Membr Biol; 2008 Feb; 25(2):164-76. PubMed ID: 18307103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae.
    Zhang P; Du G; Zou H; Chen J; Xie G; Shi Z; Zhou J
    Sci Rep; 2016 Feb; 6():20910. PubMed ID: 26865023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.
    Beltran G; Novo M; Rozès N; Mas A; Guillamón JM
    FEMS Yeast Res; 2004 Mar; 4(6):625-32. PubMed ID: 15040951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a.
    Omura F; Hatanaka H; Nakao Y
    FEMS Yeast Res; 2007 Dec; 7(8):1350-61. PubMed ID: 17825063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae.
    Georis I; Fayyad-Kazan M; Zaremba E; Vierendeels F; Roovers M; Dubois E
    Yeast; 2022 Sep; 39(9):493-507. PubMed ID: 35942513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example.
    Lv Y; Zhao X; Liu L; Du G; Zhou J; Chen J
    J Microbiol Methods; 2013 Jul; 94(1):25-9. PubMed ID: 23611841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.
    Jara M; Cubillos FA; García V; Salinas F; Aguilera O; Liti G; Martínez C
    PLoS One; 2014; 9(1):e86533. PubMed ID: 24466135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae.
    Regenberg B; Kielland-Brandt MC
    Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae.
    Cai H; Kauffman S; Naider F; Becker JM
    Genetics; 2006 Mar; 172(3):1459-76. PubMed ID: 16361226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses.
    Inbar E; Schlisselberg D; Suter Grotemeyer M; Rentsch D; Zilberstein D
    Biochem J; 2013 Jan; 449(2):555-66. PubMed ID: 22994895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.